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Abstract

Training a single deep blind model to handle different quality factors for JPEG
image artifacts removal has been attracting considerable attention due to its
convenience for practical usage. However, existing deep blind methods usually
directly reconstruct the restored image without predicting the quality factor, thus
lacking the flexibility to control the output as the non-blind methods and failing
to fully take advantage of the quality factor information for better reconstruc-
tion. As a result, they do not perform well in real applications as the real images
could be compressed more than once. To remedy this, in this thesis, we propose
a flexible deep blind JPEG artifacts removal network, namely FBAR, that can
not only use quality factor during training for better restoration but also predict
the adjustable quality factor to flexibly control the trade-off between artifacts
removal and details preservation. To improve the flexibility, FBAR decouples
the adjustable quality factor from the JPEG image via a decoupler module and
then embeds the predicted quality factor into the subsequent reconstructor mod-
ule through a quality factor attention block for flexible control. To improve the
practicability, a practical degradation model which involves double JPEG com-
pression is proposed for data synthesis. Extensive experiments on single JPEG
compressed images, the more general double compressed JPEG images and real-
world JPEG images demonstrate that the proposed FBAR achieves favorable
performance against state-of-the-art methods in terms of quantitative metrics
and visual quality.
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Introduction

1.1. Motivation

With the widespread availability of the Internet and the development of afford-
able, high-quality digital cameras, lossy image compression technique which uses
inexact approximations but reduced information for representing the encoded im-
age is indispensable and inevitable for saving storage size and bandwidth. While
introduced three decades ago, JPEG compression [Wal92] is still one of the most
widely-used image compression formats due to its simplicity and fast encoding/de-
coding speeds. JPEG compression splits an image into 8 x 8 blocks and applies
discrete cosine transform (DCT) to each block. The DCT coefficients are then
divided by quantization table and rounded to the nearest integer. The elements
in the quantization table control the compression ratio and the rounding opera-
tion is the only lossy operation in the whole process. The quantization table is
often represented by an integer called quality factor (QF) ranging from 0 to 100,
where a lower quality factor means less storage size but more lost information.
An example of JPEG compression can be found in Figure 1.1.

As a lossy compression algorithm, JPEG compression usually introduces an-
noying blocky artifacts, which deteriorates the visual quality and hinders the per-
formance of subsequent low-level vision processing such as super-resolution and
high-level vision processing such as object detection. Inspired by the success of
deep neural networks (DNNs) for image classification [KSH12,SZ15], researchers
began to resort to DNNs for JPEG artifacts removal and have achieved notable
academic success.

However, existing methods for JPEG artifacts removal generally have four lim-
itations in real applications:

(1) While JPEG compression can adjust the quality factor for a flexible trade-
off between storage size and visual quality, most existing DNNs based meth-
ods [CHB17,CP16,DDCLT15,LZZ*18,ZLL*19] trained a specific model for each
quality factor, lacking the flexibility to learn a single model to handle different
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(c) JPEG, QF=50 (208.9 kB) (d) JPEG, QF=10 (89.0 kB)

Figure 1.1.: An illustration to show the effects of JPEG compression. We
can control the tradeoff between saving storage size and preserving
image quality by setting different quality factors. Image from DIV2K
Dataset [TAVGT17].

JPEG quality factors. It is expensive and impractical to train and deploy so
many models for real use.

(2) DCT-based methods [ELDS20, GC16, ZYHL18| need to obtain the DCT
coefficients or quantization table as input, which is only stored in JPEG format.
In real world, it is common that a JPEG image is resaved as another format such
as PNG, making the required prior information not accessible. Besides, when
images are compressed multiple times, the stored quantization table only reflects
the most recent compression information. As a result, a potential gap between
different quality factors along the degradation history will severely reduce the
restoration performance.

(3) To solve the first problem, recent works [ELDS20,FZW+19,ZZC*17] resort
to training a single model for a large range of quality factors. However, these blind
methods can only provide a deterministic reconstruction result for each input,
ignoring the need for user-preference. Actually, subjective visual perception is
more important in real image restoration.

(4) Existing methods are all trained with synthetic images, which assume that

the low-quality images are only compressed once. However, most images from the
Internet are compressed many times. Despite the progresses for real recompressed
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images, e.g., from Twitter [DDCLT15, FZW'19], a detailed and complete study
on double JPEG artifacts removal is lacking.

As the results of current state-of-the-art methods on real JPEG images are often
not satisfactory, a study to overcome the fourth problem would be a significant
step towards real image restoration. We propose that this discrepancy is in part
due to unrealistic synthetic training data. Many classic algorithms generalize
poorly to real data due to assumptions that the image is compressed only once
without considering the multiple steps of a typical image compression pipeline.
One approach to ameliorate the mismatch between synthetic training data and
real images is to collect images that have been spread many times on the Internet.
However, it is impractical to also get their original ones. Given original images,
collecting repeatedly transmitted images is as difficult as getting a specified drift
bottle. Acquiring these image pairs is expensive and time-consuming, which
is exacerbated by the large amounts of training data required to prevent over-
fitting when training neural networks. Furthermore, because different websites
and software employ different compression algorithms, only getting from some
of them is not enough. On the other hand, the real degradation model is often
unknown, so it is almost impossible to include every possibility in the synthetic
training set. Therefore, a controllable flexible model is well-understood and can
be leveraged to deal with images with different degradation.

1.2. Contributions

To tackle the above problems, we design a flexible blind artifacts removal net-
work, namely FBAR, for real JPEG image restoration. Our FBAR is a single
model that can deal with JPEG images with different quality factors. In addition,
FBAR can work independent of the image formats, as it directly processes im-
ages in pixel-domain, without the need to access meta information from the input
images. By further decoupling the latent quality factor from the input JPEG im-
age, we can use this important parameter to guide the artifacts removal process.
More importantly, as a controllable variable with clear physical meaning, the
predicted quality factor can be adjusted via interactive selection to balance arti-
facts removal and details preservation. To show the effectiveness of the proposed
FBAR, we provide a detailed study on double JPEG compression for handling
real JPEG images with severe degradation. The experiments show that some
types of recompression are actually equivalent to single JPEG compression in
terms of artifacts removal. On the other hand, when the 8 x 8 blocks of double
JPEG compression are not aligned, and the first quality factor QF1 < QF2, ex-
isting blind methods will fail to work. However, our quality factor predictor can
help to explain the behavior of current blind methods under unseen scenarios. We
provide comprehensive empirical evidence showing that blind methods work are
easy to be mislead by the unseen compound artifacts, resulting in a unpleasant
reconstructed output. By correcting the predicted quality factor, FBAR instead
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can boost the performance of complex double JPEG images. To achieve a fully
blind model, we further propose a simple but effective dominant quality factor
prediction algorithm that can find the dominant quality factor that brings the
main compression artifacts, by utilizing the properties of JPEG images.

To summarize, the main contributions of this thesis are:

(1) A flexible blind JPEG artifacts removal network (FBAR) is proposed.
FBAR can predict the latent quality factor to guide the JPEG image restora-
tion. More importantly, the predicted quality factor can be adjusted by users to
achieve a balance between artifacts removal and details preservation.

(2) We perform a thorough analysis of images with double JPEG compression
to take a step towards real JPEG images. To the best of our knowledge, this is
the first attempt to handle double non-aligned JPEG compression. It is our hope
that the community will gradually begin to consider this more challenging and
realistic scenario.

(3) We demonstrate the effectiveness of proposed FBAR on synthetic and real
JPEG images with complex degradation settings. Our proposed FBAR provides
a useful solution for practical applications.

1.3. Thesis Organization
The thesis is organized as follows:

o Chapter 1 introduces the background, motivation, goals, and contributions
of the thesis.

o Chapter 2 will summarize the previous work on the topics of JPEG artifacts
removal, double JPEG compression, and flexible image restoration.

o Chapter 3 will review the necessary theoretical background in image restora-
tion and deep learning for our work.

o Chapter 4 will present our proposed novel solution towards real JPEG arti-
facts removal. We also address the importance of flexibility by showing the
limitations of existing methods on double JPEG compressed images, and
present the dominant quality factor prediction algorithm which help to get
a fully blind model.

o Chapter 5 will show the experiments conducted on the synthetic single,
double, triple JPEG images and real-world JPEG images. We will also
present the application of our method in other vision tasks.

o Chapter 6 will give concluding remarks, summarize the major contributions
of our work, and present the future outlooks.



Related Work

In this chapter, we will briefly review the previous work related to this thesis.

First, we will introduce the progress that has been achieved for the tasks of
JPEG artifacts removal in Section 2.1. Since deep learning-based methods have
shown surpassing performance in several image restoration tasks lead to a promis-
ing outlook, we will not consider traditional methods in this section.

Afterwards, we will present the work related to double JPEG compression in
Section 2.2, which is an active research area in image forensics but has not been
studied in the context of image restoration yet.

Since one of our novelties is the flexibility in image restoration, we will also
introduce the related flexible image generation tasks by which we are inspired in
Section 2.3.

2.1. JPEG Artifacts Removal Networks

Learning-based methods have made notable progress in JPEG artifacts removal
in the past few years. Dong et al. [DDCLT15] first introduced deep learn-
ing to remove JPEG artifacts, inspired by the success of super-resolution net-
work [DLHT14]. Chen and Pock [CP16] proposed a dynamic nonlinear reaction
diffusion model with time-dependent parameters for a variety of image restora-
tion, including JPEG deblocking. In [CHB17], a 12-layer deep convolutional net-
work with hierarchical skip connections was presented and trained with a multi-
scale loss function. Zhang et al. [ZZC17] employed batch normalization [IS15]
and residual learning [HZRS16a] strategies to speed up the training process and
boost the performance on general blind image restoration task. A wavelet trans-
form based network was presented in [LZZ*18] as the generalization of dilated
convolution [YK16] and subsampling, leading to a large improvement. Fu et
al. [FZW™19] proposed a deep convolutional sparse coding network that combines
model-based methods with deep learning. To extract the long-range dependencies
between pixels, a residual non-local attention network is designed in [ZLL*19],



Chapter 2. Related Work 2.1. JPEG Artifacts Removal Networks

U, 8:U Un
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Figure 2.1.: The architecture of DCSC. DCSC combines traditional optimiza-
tion methods with deep learning, and is made up of three compo-
nents: multi-scale feature extraction, convolutinoal learned iterative
shrinkage threshold algorithm, and image reconstruction. Figure

adapted from [FZW*19].

which resulted in better representational ability. Besides, dual-domain convolu-
tional network based methods [GC16,KSC20,ZYHL18,ZCT*19] were proposed to
take the advantages of redundancies on both pixel and DCT domains. Recently,
Ehrlich et al. [ELDS20] trained their networks with the utilization of quantization
matrix as prior information, which allows a single model to correct artifacts at
any quality factor and achieved state-of-the-art results.

However, most existing methods train a model for each quality factor, making it
impossible in the real application. Besides, DCT-based approaches need the DCT
coefficients or quantization table as the input, but such information is only stored
in JPEG format and only records the most recent compression. Furthermore,
existing blind methods which train a single model for multiple quality factors
only gives a deterministic restored result, without considering the need for user
preference. In addition, all of the current JPEG artifacts removal methods assume
the JPEG image is only compressed once, which is far from the possible severe
degradation in the wild.

Figure 2.1 illustrates the restoration procedure of DCSC [FZW™19], which
is specially designed for JPEG artifacts removal using deep convolutional sparse
coding, a method that combines traditional methods and deep learning together.
Traditional methods for reducing JPEG artifacts are usually based on model-
based optimization, which is well explainable in physical meaning but time-
consuming during inference. On the contrary, learning-based methods enjoy
fast inference speed, but have less explainability. DCSC is set up based on the
framework of learned iterative shrinkage threshold algorithm (LISTA) for con-
volutional sparse coding (CSC). Besides, dilated convolutions are employed for
multi-scale feature extraction, which can increase the receptive fields to handle
multiple JPEG quality factors without introducing extra parameters. The final
output is obtained by adding the corrupted input to the learned residual image,
which is similar to [ZZC*17].
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Degraded Color Image, Legend:

Y channel Quantization Matrix, | (Cb- or Cr-channel), | Color Quantization Matrix, Input | Intermediate Output
8 x 8, 1 channel H x W, 1 channel 8 x 8, 1 channel

— 3 |

Intermediate Output Final Output

Color Channel
— Restored Y channel Image, — Correction Network Restored Color channel Image,
H x W, 1 channel Hx W, 1 channel

Figure 2.2.: The architecture of QGAC. Given a JPEG image, the pixel infor-
mation and quantization matrix of Y channel are extracted as input
to firstly get the restored Y channel. Next, this intermediate output,
together with degraded Cb and Cr channels as well as quantization
matrix of all channels, are fed into the color channel correction net-
work to get the final restored color image. Figure from [ELDS20].

Degraded Y channel,
Hx W, 1 channel
Our Networks | |Final Output

Y Channel
Correction Network

We also show the architecture of QGAC [ELDS20] in Figure 2.2. While existing
methods only consider restoration of the luminance Y channel, QGAC firstly
restores the Y channel image as an intermediate step towards color JPEG image
restoration. We should note that in this architecture, the quantization matrix
is a required input. However, this information is only stored in JPEG format
and only reflects the most recent compression information. In this thesis, we will
show the limitation of such DCT-based methods in the real application.

2.2. Double JPEG Compression

Double JPEG compression has been studied in the area of image forensics for a
long time, as detection of double compression can provide important clues for re-
covery of image processing history. Fu et al. [FSS07] showed that if an image has
been JPEG compressed only once, then the first digits of the quantized JPEG co-
efficients follow a Benford-like logarithmic law. In [BCS10,BP11,CH11,LQHQ07],
double JPEG compression was classified into two cases: aligned and non-aligned.
Chen et al. [CH11] formulated the periodic characteristics of JPEG images in
both spatial and DCT domains and showed that such periodic characteristics
will be changed after recompression. Recently, learning-based methods [BBB*17,
PCAL18, WZ16] were proposed to detect double JPEG compression. Besides, es-
timation of the first quantization table of JPEG images is also a challenging
problem and studied in both aligned [GPBB14,PBPG14,XYL"17, YHN"16] and
non-aligned cases [BP12,DO18,YWQZ20]. However, these methods focus on an-
alyzing the DCT coefficients, which are only stored in JPEG format. Besides,
the research on double JPEG compression restoration is still lacking.

In fact, the non-aligned double JPEG compression is very common in daily life.
For example, a non-aligned double compressed JPEG image is easy to generate by
cropping out a region of interest from a JPEG image, and then save the region also
in JPEG format, as shown in Figure 2.3. Besides, most social network websites
always downsample the uploaded images and then do JPEG compression. If the
uploaded image is a JPEG image, then a non-aligned double compression occurs.
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A common practical scenario when we want to crop out a region of
interest from a JPEG image. If we save the region of interest also
as JPEG, then a double JPEG compression occurs. Right: In this
scenario, if the 8 x 8 blocks of the newly saved image from the region
of interest are not aligned with the blocks of the original JPEG image,
then this is non-aligned double JPEG compression.

—

Result values -_||
JPEG blocks ﬂ__ll-_llj

Histogram %
e Py

JPEG image ‘ ‘ ‘ Result image

Trained network

Quantization
table

Figure 2.4.: A learning-based double JPEG detection method proposed
in [PCAL18]. The manipulated regions can be identified by detect-
ing the double JPEG blocks. Figure from [PCAL1S|.

The learning-based double JPEG detection method for image tampering pro-
posed in [PCAL18]| is shown in Figure 2.4. The input of the neural network is
the histogram feature extracted from the DCT coefficients of 8 x 8 JPEG blocks
within an image, while the output is a 2 x 1 vector representing the classification
result (single/double JPEG). By sliding window over the whole image, manip-
ulated regions can be detected effectively. This image tampering detection is
based on that single and double JPEG compressed image often have different
artifacts. In our thesis, we propose that aligned double JPEG compression and
non-aligned double JPEG compression with QF1 > QF2 are equivalent to single
JPEG compression, which will also be verified by this method.
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Figure 2.5.: The framework of CResMD for controllable image restora-
tion. Figure from [HDQ20].

2.3. Flexible Image Restoration

Flexible image generation based on the conditional variable has drawn much at-
tention, e.g., in text-to-image generation [LQLT19, RAY 16, XZH*18, ZXL*17]
and facial attribute editing [CNL*20, CCK*18, HZK*19, LDX*19]. However,
these methods can not be directly adopted in image restoration. Zhang et
al. [Z7718a] proposed to take a tunable noise level map as the input to han-
dle noise on different levels. In [ZZZ18b], a PCA-based dimensionality stretching
of the degradation parameters was proposed to take blur kernel and noise level
as input for super-resolution. Wang et al. [WGTY19] proposed a novel control-
lable framework for interactive image restoration. He et al. [HDQ20] focused on
the images with multiple degradations and added the multi-dimensional degrada-
tion information as input, as illustrated in Figure 2.5. However, these methods
usually assume that the controllable variable is provided, but such information
is almost unknown in real applications. This encourages us to work towards a
flexible blind solution.

Inspired by the ideas in image attribute editing and flexible image restoration,
we regard the quality factor of JPEG images as the image attribute in this the-
sis. The quality factor can be utilized to flexibly control the desired output to
make a trade-off between preserving texture details and removing JPEG artifacts.
More importantly, our method is both blind and non-blind, which can automat-
ically provide an ideal restored result and control the output through interactive
selection.






Preliminaries

In this chapter, background knowledge about JPEG compression algorithm and
the general problem formulation in image restoration are stated, and a selection
of specific deep learning approaches which are related to our proposed method is
presented.

We will start by introducing the encoding and decoding steps of JPEG compres-
sion algorithm in Section 3.1. Following this, we will give the general problem
formulation of image restoration tasks, including JPEG artifacts removal and
other common tasks in Section 3.2. Finally, relevant deep learning frameworks
and techniques are explained in Section 3.3.

3.1. JPEG Compression Algorithm

JPEG compression [Wal92] is the name given to an image compression algorithm
developed by the Joint Photographic Experts Group in 1992. While introduced
three decades ago, JPEG compression is still the most widely used image com-
pression standard in the world due to its simplicity and fast encoding/decoding
speeds. It is also the most widely used digital image format. The degree of com-
pression can be adjusted, allowing a controllable trade-off between saving storage
size and preserving image quality. In this section, we will introduce the basic steps
of encoding and decoding of the JPEG compression algorithm respectively. An
overview of JPEG encoding and decoding procedures can be seen in Figure 3.1.

3.1.1. Encoding

The main steps of encoding in JPEG compression are color space transformation,
downsampling, block splitting, discrete cosine transform, quantization, and en-
tropy coding. We introduce these steps in detail as follows.

Color Space Transformation: We take the color images as an example because
grayscale images are regarded as Y’ channel images and follow the same subse-
quent procedure. Given a color image, it is firstly converted from RGB space to

11
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| JPEG Encode >

Color Space ’ - Entropy
R,— Transform —»{Downsampling | DCT | Quantization |—» Encoding | ¥
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image JPEG
data Image
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Figure 3.1.: The general procedure of JPEG algorithm. JPEG compression
algorithm consists of encoding and decoding steps.

RGB2Y'CpCr

Figure 3.2.: Color space transformation from RGB to Y'CgCy space. This
procedure is based on that human eyes are more sensitive to the
variations of brightness than color. After the transformation, each
channel is processed separately.

Y'CpCr space, consisting of one luma component (Y’), representing light inten-
sity, and two chroma components (Cg and Cg), representing color. Please note
that luma (Y’) is different from luminance (Y) because of the consideration of
the gamma correction. According to JPEG encoding standard in MATLAB, the
transformation is given by:

Y = %(65.481 -R 4 128.553 - G + 24.966 - B) + 16
1

Cp = ﬁ(—37.797 -R—74.203-G+112.0-B) + 128 (3.1)
1

Cr = ﬁ(HQ.O -R—93.786 - G — 18.214 - B) + 128

Y'CgCp space allows confining the brightness information, which is more im-
portant to the visual quality, to a single channel so that greater compression can

12
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be done without a significant drop on perceptual quality of the image. This step
is based on the fact that perception principle of the human visual system.

Downsampling: The step of downsampling is also called chroma subsampling,
which reduces the spatial resolution of the Cg and Cg channels. Typically, the
downsampling ratio is set as 4:4:4 (no chroma subsampling), 4:2:2 (halve the
horizontal chroma resolution), 4:2:0 (have both the horizontal and vertical chroma
resolution). This step is based on the fact that the human visual system is much
more sensitive to variations in brightness than color. Next, the three channels
are processed independently in a similar way.

Block Splitting: After downsampling, each channel is split into 8x8 blocks.
If the size of horizontal or vertical direction is not a multiple of 8, then the
remaining incomplete blocks must be filled with values. Filling the edges with
constant values will usually generate rining artifacts along the border, so more
advanced border filling techniques can be applied to reduce such artifacts.

Discrete Cosine Transform: Discrete cosine transform (DCT) is applied to
each 8x8 blocks and converts the image representation from the spatial domain
to the frequency domain. More specifically, each entry of the block is firstly
centered on zero. Then two-dimensional DCT is applied for each block, which is
given by:

Dy = iau)au);;&,y cos [P o |2 T)

1

—=, u=20

o afi)=< V2’ is the normalizing scale factor.
1,  otherwise

The integers ¢ and j are the horizontal and vertical spatial frequency with
0<4,5j<T.

P, , is the zero-centered pixel value at coordinates at (z,y).

D, ; is the DCT coefficients at coordinates (3, j).

The top-left corner entry of the obtained DCT is called DC coefficient and has a
rather large magnitude. The remaining 63 coefficients are called AC coefficients.
In this way, the final signal can be placed in a corner making it easy to be
compressed efficiently in the stage of entropy.

Quantization: The entries of each block after DCT transform represent the
frequency. The goal of the quantization step is to reduce the high-frequency
components to save storage space. This is because human eyes are good at

13
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distinguishing slight differences in brightness over a large area but not so sensitive
to the variation of high-frequency brightness.

This step is quite straightforward. We only need to divide each entry of the
DCT coefficients by a constant for that component and then rounding to the
nearest integer. The constant value is called the quantization step, and each
component of the 8 x 8 DCT coefficients within a block corresponds to a quan-
tization step. The quantization step is computed with:

D; ; .
D}, =round(=%),0 <4,j <7 (3.3)

irj

where D{; and Q7 ; are the quantized DCT coefficient and the quantization step
at the coordinate (i, 7).

All the quantization steps form a 8 x 8 matrix called quantization table (or
quantization matrix). After the quantization step, most higher frequency com-
ponents are rounded to zero, and the rest components take much less storage
space. Please note that the rounding operation is the only lossy operation in the
whole process other than chroma subsampling.

Depending on the size of the quantization steps, more or less information is
lost in this step. In most software, users can define the degree of the JPEG
compression by setting the quality factor, which is an integer ranging from 0
to 100 and associated with a quantization table. It should be pointed out that
quantization is the only step where users have an influence on the result.

Entropy Coding: Entropy coding is a technique of lossless data compression.
In this step, the quantized DCT coefficients are arranged in a zigzag order, which
groups similar frequencies together, as illustrated in Figure 3.3. Zeros are coded
by a number representing the length of zero, and the remaining components are
coded using Huffman encoding.

3.1.2. Decoding

The decoding procedure largely follows the reverse steps of the encoding proce-
dure. First, by taking the element-wise product of the DCT coefficient matrix
and quantization matrix, the original DCT coefficient is reconstructed, with the
bottom-right components as zeros. Next, two-dimensional inverse DCT is applied
to the reconstructed DCT coefficients, given by:

P, = ia(z’)a(j) 27: 27: D, cos {W] cos {W} (3.4)

z=0 y=0
where

o «(1)is the normalizing scale factor defined as above.
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Figure 3.3.: Zigzag ordering for the arrangement of DCT coefficients. In
this way the similar frequencies are grouped together.

e The integers x and y are the pixel values in horizontal and vertical direction
with 0 <z, y < 7.

e D, ; is the reconstructed DCT coefficients at coordinates (4, j).
+ P, , is the reconstructed zero-centered pixel value at coordinates at (z,y).

Then the reconstructed zero-centered pixel values are rounded to integer values
and added with 128 to each entry, to get the reconstructed images in Y'CgCgr
space. The decoding process may generate values outside the range of [0, 255], so
the output should be clipped to prevent overflow. Finally, the image is converted
back to RGB color space, which is computed by:

R = 255 - (0.00456621 - Y' 4+ 0 - Cp + 0.00625893 - Cr) — 222.921
G = 255 - (0.00456621 - Y’ — 0.00153632 - Cg — 0.00318811 - Cr) + 135.576

B = 255 - (0.00456621 - Y’ +0.00791071 - Cg — 0 - Cr) — 276.836
(3.5)

3.2. Image Restoration

Image restoration is a classical low-level computer vision problem that has been
studied for a long time due to its highly practical value in various real applications
ranging from medical imaging, film archival, forensic science to consumer photog-
raphy. In this section, we will give the problem formulation of image restoration,
introduce the common image restoration tasks, and tell the difference between
blind and non-blind methods.
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3.2.1. Problem Formulation

In general, the purpose of image restoration is to take an observed corrupted
low-quality image and estimate the clean original image. Different from image
enhancement which aims to improve an image subjectively, image restoration re-
moves distortion from images to reconstruct the original one, which is an objective
process.

The overall steps of image restoration are first to model the degradation and
then apply the inverse process. So designing a degradation model which can
accurately describe the degradation history is a key step in image restoration.
Generally, the degradation model can be formulated as:

y =H[x| +n (3.6)

where

x is the original clean image.

y is the degraded observation.

HJ] is a degradation function.
« n is additive noise, e.g. white Gaussian noise with standard deviation o.

Image restoration is an ill-posed inverse problem, so regularization needs to be
imposed to constrain the solution. Most traditional methods solve this problem
from a Bayesian perspective on the framework of Maximum A Posterior (MAP):

x = arg max log p(y|x) + log p(x) (3.7)

where X is the estimated reconstructed result, log p(y|x) is the log-likelihood of
degraded observation y,logp(x) represents the prior of x and is independent of
y. More formally, Equation 3.7 can be reformulated as

1
x = argmin _ly - H[x]||? + A\ (x) (3.8)

where the objective is to minimize an energy function made up of a data fidelity
term 1|y — Hx||? and a regularization term ®(x). The parameter A controls the
trade-off between them. The fidelity term guarantees that the solution is in line
with the degradation model, while the regularization term ensures the desired
property of the output.

The main challenge in image restoration is that much information has been
lost during the degradation, making it a highly ill-posed inverse problem. To get
a good reconstructed result, prior knowledge is required to provide additional in-
formation. Therefore, it is significant to model the prior of clean images properly.
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Besides, by specifying different degradation functions, we can correspondingly
define and solve different image restoration tasks. Four classical image restora-
tion would be image denoising when H is an identity matrix, image deblurring
when H is a blurring operator, image super-resolution when H is a composite op-
erator of blurring and down-sampling, JPEG artifacts removal when H is JPEG
compression. We briefly introduce these tasks as follows.

Denoising: The goal of image denoising is to recover a clean, high-quality image
from its noisy observation. The noise in an image may come from the trans-
mission of electronic components, the limitations of imaging systems, or other
influences and disturbances from the environment. A commonly adopted image
degradation model in the research community for the denoising tasks is written
as:

y=X+n (3.9)

Most denoising methods tackle the additive white Gaussian noise (AWGN) case,
which assumes n to be the independent identically distributed Gaussian noise
with zero mean and standard variance . The noise can also be of other types,
such as Poisson noise or pepper and salt noise.

Deblurring: Deblurring is the process of removing blurring artifacts from blurred
observations to get clear and sharp images. This kind of degradation may come
from the low resolution of the camera, out of focus, or high-speed motion. The
degradation model in image deblurring is usually written as:

y=x®k+n (3.10)

where ® denotes the 2D convolution operator, and k is the blur kernel. In imag-
ing systems, the blur kernel is the shape of an idealized point imaged through the
optical system and called the point spread function (PSF). Traditionally, image
deblurring problems are solved through inverse filtering in the frequency domain.
The image deblurring problem can be split into two distinct problems: recover-
ing the PSF and recovering the original image using a known PSF. While blind
deconvolution methods try to recover the PSF, non-blind methods focused on
robust deconvolution based on a known PSF.

Super-Resolution: Single image super-resolution (SISR) is also a classical im-
age restoration problem. The goal is to estimate the clean, high-resolution coun-
terpart of a given low-resolution image. Since imaging systems have limited
resolution, SISR has wide applications in various areas such as face recognition,
medical imaging, and remote sensing. The general degradation model for SISR
is given by

y=(x®k) |, +n (3.11)

where x ® k represents the convolution between blur kernel k and high-resolution
image x. |, is a subsequent downsampling operation with scale factor s. n is
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additive white Gaussian noise with noise level . When the scale factor s = 1,
SISR becomes deblurring and denoising problems.

JPEG Artifacts Removal: The focus of our work is JPEG artifacts removal.
JPEG artifacts are introduced during the quantization step in the encoding pro-
cedure in JPEG compression algorithm, as we have discussed in Section 3.1.
Compared with the other three above image restoration tasks, the mathemati-
cal degradation model of JPEG compression is highly nonlinear and thus more
complicated. Besides, as JPEG is both the most widely used image compression
algorithm and the most widely used image format, JPEG artifacts are actually
more common than Gaussian noises in the real wold. In the research community,
the degradation caused by JPEG compression is usually given by:

y = JPEG(x, QF) (3.12)

where the quality factor QF controls the degree of degradation.

This degradation model assumes that the corrupted JPEG image is compressed
only once. However, in the real world, most JPEG images are compressed many
times, and existing methods often fail to work on those real JPEG images. Design-
ing a more realistic degradation model considering multiple JPEG compression
to generate synthetic training pairs can be a solution. However, the degradation
history of real images is always unknown, so the synthetic data do not necessar-
ily describe the real degradation accurately. Therefore, in this thesis, we mainly
focus on solving the real JPEG problems using the same degradation model as
existing methods, proving a solution to real image restoration problems under
limited training data.

Besides, the degradation model of JPEG compression can be combined with
other tasks such as deblurring and SISR, which would be more practical in the
real world.

3.2.2. Blind and Non-Blind Methods

The concepts of "blind” and "non-blind” are very common in image restoration,
so it is necessary to explain the difference between them. According to whether
the degradation information is available during the inference, image restoration
methods can be classified into blind methods (available) and non-blind methods
(not available). More specifically, this degradation information is represented by
e.g. noise level in image denoising, blur kernel in image deblurring, and quality
factor in JPEG artifacts removal.

In the real world, the degradation history of corrupted images is often unknown,
so it is natural to think about designing a blind model trained with synthetic data
with various degradation types for better real application. However, when the
degradation is complex, e.g. motion blur, the performance would deteriorate
seriously. This is because a low-quality image may correspond to different high-
low quality images, which aggravates the pixel-wise average problem [LTH"17,
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Figure 3.4.: The dimensionality stretching strategy proposed in SRMD.
For a W x H low quality image, the vectorized blur kernel is first
projected onto a t-dimensional linear space and then stretched into
the W x H x (t + 1) degradation map with the noise level. Figure
from [ZZ7Z18b].

27718b,77719], leading to an over-smoothed result. Besides, when combined
with degradation prior as input, non-blind methods can be adjustable to control
the trade-off between removing noise and preserving detail, which is promising
for real noise removal. Furthermore, non-blind methods can be plugged into
the variable splitting algorithms for general image restoration, including image
deblurring, image super-resolution, and image inpainting.

However, it is not easy to directly feed both the degradation prior and low-
quality image into learning-based methods, as they usually have different dimen-
sions. To tackle this problem, FFDNet [ZZ718a] stretched the noise level o into
a noise level map with all elements set as o. This noise level map can also be fur-
ther extended to degradation maps with multiple channels for more general noise
removal problems. For the SISR task, SRMD [ZZZ18b] proposed a dimension-
ality stretching strategy which can combine the blur kernel with noise level into
degradation maps. As illustrated in Figure 3.4, the blur kernel is vectorized into
a vector and then projected onto a linear space by Principal Component Analysis
(PCA). The next step is similar to FFDNet [ZZZ18a], where the concatenated
low dimensional vector and the noise level are stretched into degradation maps.

The main limitation of non-blind methods lies in assuming that the degradation
prior is known because most real corrupted images do not provide such informa-
tion. A possible solution is to combine the non-blind methods with degradation
estimation, e.g. noise level and blur kernel estimation. However, most degra-
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dation parameter estimation methods are specially designed for a specific model
and contain more or less errors. On the contrary, Non-blind methods are usually
trained with true degradation history, which is often different from the estimated
degradation. During inference, such a mismatch may lead to a large drop in per-
formance. Another possible solution is to set up a series of possible degradation
information to generate different results for a given corrupted image. Then users
can choose the desired output according to their preference. However, generating
multiple images will cost much more time.

In this thesis, we present a novel method that can predict the quality factor,
which is the latent degradation parameter of a JPEG image, and use it to guide
the restoration procedure. The quality factor prediction is jointly trained with
image reconstruction, which solves the mismatch problem mentioned above. Be-
sides, by setting different quality factors in an interactive way, the need for user
preference is also considered. Since the quality factor is only fed into the decoder
part, the deep image features extracted by the encoder is fixed, which save much
time during interactive selections.

3.3. Deep Learning

The focus of our work is to develop a powerful JPEG artifacts removal model
using deep learning. Therefore, we will introduce the basic knowledge of encoder-
decoder architectures, residual learning, and attention mechanism, upon which
our proposed method is built.

3.3.1. Encoder-Decoder Architectures

Autoencoder: Autoencoder is a neural network that is trained to learn efficient
data representation in an unsupervised way. Figure 3.5 illustrates a general layout
of an autoencoder, which maps an input x to a reconstructed output x’ through an
internal representation or code z. It should be noted that the goal of autoencoders
is not to learn to copy the input perfectly, which can be done by simply setting x’
as X. Instead, autoencoders usually learn useful properties of the input data by
forcing them to learn certain properties of the training data. One way to extract
such useful properties is to constrain the feature representation z to have a smaller
dimension than x. An autoencoder whose dimension in the bottleneck layer is
less than that of the input is called an undercomplete autoencoder. Learning an
undercomplete representation forces the autoencoder to extract the most salient
features of the input data.

The autoencoder can be trained simply with L2 loss function, which is written

as:
n

L(0,¢) = = > (x — fy(ge(x1)))? (3.13)

=1
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Reconstructed
Input <------ooooooooooos Ideally they are identical. ------------------ > input
x~x
Bottleneck!

Encoder Decoder ,
X
9o fo X

An compressed low dimensional
representation of the input.

Figure 3.5.: A schematic illustration of Autoencoder. The autoencoder has
two components: the encoder g, which maps x to z, and the decoder
fo, which maps z to an internal representation or code x’.!

After training, the decoder part can be thrown away. In addition to dimension
reduction, the encoder can be used to initialize a supervised model. Autoen-
coders were already around for decades but initially were using linear mappings,
fully connected networks. If a linear decoder is used and the loss function is L2,
an autoencoder learns the same subspace as a PCA would do. With nonlinear
encoder and decoder functions, autoencoders can learn a more powerful nonlinear
generalization of PCA.

However, if the encoder and decoder are equipped with too much capacity,
the autoencoder can potentially learn an identity function, only copying input
data without extracting useful information about the dataset. A similar problem
occurs if the bottleneck representation has larger dimension than (overcomplete
autoencoders), or equal to, the input. Various techniques have been proposed to
prevent autoencoders from learning the identity function and to improve their
ability to capture richer representations.

One solution of them is called regularized autoencoders, which force the model
to learn other properties besides copying input. In this way we do not need
to reduce the model capacity or code size. Regularized autoencoders can be
nonlinear and overcomplete but still learn useful information about the dataset.
Classical strategies for regularizing an autoencoder include denoising autoen-
coder [VLBMOS] (change error term of the cost function), sparse autoencoder (add
a sparse penalty to the cost function), and contractive autoencoder [RVM™11]
(keep learned representation staying in a contractive space). In addtion to the
regularized autoencoders, two generative modeling methods related to autoen-
coders but do not require regularization are variational autoencoders [KW14]

Tmage source: https://lilianweng.github.io/1il-log/
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x®

Figure 3.6.: DAE explained by manifold learning. Training data z (e) are
lying near a low-dimensional manifold illustrated with the bold curve.
Intermediate representation can be explained as a coordinate system
for data points on the manifold. Noisy data & (e) obtained by ap-
plying corruption process ¢(x|x) will be farther from the manifold.

and generative stochastic networks [BLAY 14], which are trained to approximately
maximize the probability of the training data.

Denoising Autoencoder: Since our proposed method is more related to
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Figure 3.7.: Vector field learned by a denoising autoencoder around the
manifold. Figure from [AB14].

denoising autoencoder, we introduce it here with more details. The denoising
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autoencoder [VLBMO08] (DAE) is an autoencoder, whose input is corrupted data
and output is original clean data. DAE modifies the loss function in Equation 3.13
to:

n

—— (i) _ (Y)))2

L(0,) = n;(x folgs (X)) (3.14)
where the input X is the corrupted noisy copy of original data x. The denoising
autoencoder can be explained from manifold learning. DAE assumes that natural
data actually lies in a low-dimensional manifold of the high-dimensional space
of input data x. As illustrated in Figure 3.6, the intermediate representation
z = g4(x) is interpreted in [VLBMOS§] as a coordinate system for points on the
manifold. The goal of training a denoising autoencoder to map a noisy data
point ¥ back to the original clean data point . A further explanation is shown
inFigure 3.7, where the vector field learned by the DAE is illustrated. The vector
field has zeros at both maxima and minima of the estimated density function
on the manifolds. The autoencoder can map data points with low probability
to higher probability reconstructions. When the probability is maximal, the
reconstruction is more accurate, then the arrows shrink.

U-Net: U-Net [RFB15] is a classical successful encoder-decoder architecture
which is developed from autoencoders. U-Net was originally designed for medical
image segmentation but immediately also widely applied to other various tasks,
including image restoration.

U-Net is a symmetric architecture and skips the connections between the up-
sampling and down-sampling path using a concatenation operator. The architec-
ture of U-Net is illustrated in Figure 3.8. Like most encoder-decoder architectures,
U-Net has three parts: encoder, bottleneck, and decoder. The encoder part con-
sists of four contraction blocks. Each block is made up of two 3 x 3 convolutions,
with each convolution followed by a 2 x 2 max pooling operation with stride 2
for downsampling. The number of feature channels gets double after each down-
sampling operation. The bottleneck part uses two 3 x 3 convolutions and 2 x
2 up convolution. The decoder part consists of several expansion blocks, with
each block passing the input, a concatenation with the correspondingly cropped
feature map from the contracting path, to two 3 x 3 convolutions and a 2 x 2
upsampling operation that halves the number of feature channels. Finally, 1 x 1
convolution is employed to adapt the number of feature channels to the same as
the number of desired output channels.

The success of U-Net mainly lies in that it can combine the low-level image ap-
pearance information and high-level abstract information. The high-level abstract
information can provide the contextual semantic information of the segmentation
target in the entire image, which can be understood as a feature that reflects the
relationship between the object and its environment. In contrast, the low-level
high-resolution information is directly transferred from the encoder to the de-
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Figure 3.8.: The architecture of U-Net. Figure from [RFB15].

coder at the same height after concatenating operation, providing more refined
features for segmentation, such as gradients.

3.3.2. Residual Learning

In the deep network model with deep levels, in addition to the problem of gradient
diffusion, there is a problem of degradation. Batch Normalization is an effective
method to solve the gradient diffusion problem [IS15]. The so-called degradation
problem is that as the depth increases, the network accuracy reaches saturation
and then drops rapidly, as is shown in Figure 3.9. In [HZRS16a], Residual Net-
works (ResNet) was used to solve the degradation problem. The main feature
of ResNet is the cross-layer connection, which passes the input across layers and
adds the result of the convolution by introducing shortcut connections. There
is only one sampling layer in ResNet, which is connected behind the last con-
volutional layer. ResNet enables the underlying network to be fully trained and
the accuracy is significantly improved as the depth deepens. Using 152-layer
ResNet for the LSVRC-15 image classification competition, it won the first place.
In [HZRS16a], an attempt was also made to set the depth of ResNet to 1000 and
validate the model in the CIFAR-10 image processing data set.
The original residual unit in [HZRS16a] made the computation:

yi = h(x1) + F(xi, W) (3.15)

X1 = f(y1) (3.16)
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Figure 3.9.: Training and test error on CIFAR-10. The deeper network has

higher training error and test error, which is not as expected. Figure
from [HZRS16a].
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Figure 3.10.: The building block of ResNet. Figure from [HZRS16a].

Where x; is the input feature to the [-th Residual Unit and W, are the weights
including biases related to the [-th Residual Unit. The function f is an operation
after addition (in [HZRS16a] is set as ReLU). If the function h and the function
f are both set as identity mappings: h(x;) = x; and x;41 = y; , we can then get
the relationship between adjacent layers:

Xi+1 = X7 + ]:(Xl, Wl) (3.17)
If we perform the computation recursively, we will obtain:
L—1
X7, =X+ Zf(Xi, WZ) (318)

i=l
There are three main properties of ResNet, according to [HZRS16b]:

e Any deep unit x;, can be represented by any shallower unit x; plus residual

functions i F(xi, W),
i=l

L1
o Any deep unit x; = x; + Z F(x;,W;) can be decomposed of x; and the

outputs of the residual functlons between the layers [ and L — 1.
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Figure 3.11.: The architecture of DnCNN. Figure from [ZZC*17].

o Equation 3.18 implies good back-propagation properties.

The third property is very meaningful. As analyzed in [HZRS16b], given loss
function denoted as £, we have:

o0& 0E 0xy,
ox;, 0Oxp 0x, 0x * 0x; “ Z}- xi W) (3.19)

The equation shows that the gradient can be decomposed into a term of % that
propagates information directly without concerning any weight layers and another

term of 2£ ( B Z F(x;,W;)) that propagates through the weight layers. The

term of ensures that information is directly propagated back to any shallower
unit /. ThlS equation also suggests that it is 1mp0851ble for the gradient il to

vanish, because for a mini-batch the term 1+ == a Z F(x;, W;) cannot be always

0 for all samples in a mini-batch. This means that even if the weight is very
small, the gradient of the layer will always exist.

Since its introduction, residual learning has become a basic idea in the archi-
tecture design of most computer vision tasks. DnCNN [ZZC™17] is a pioneer
in applying residual learning in image restoration. The architecture of DnCNN
is shown in Figure 3.11. Instead of using many residual blocks as in ResNet,
DnCNN utilizes a single residual unit to predict the residual image. Through
this residual learning strategy, DnCNN can implicitly remove the latent clean
image in the hidden layers to get an accurate residual image. Besides, the exper-
iment in [ZZC*17] demonstrated that residual learning and batch normalization
can benefit from each other, speeding up the training and boosting the denoising
performance effectively at the same time.

3.3.3. Attention Mechanism

Attention plays a significant role in human perception because the human percep-
tion system can not process a whole scene at once. Inspired by this mechanism,
much work has been developed to improve the performance of deep learning.
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Figure 3.12.: The structures of channel attention module and spatial at-
tention module. The channel attention module receives the out-
puts from max-pooling and average-pooling with a shared network,
while the spatial attention module receives similar outputs which
are pooled along the channel axis. Figure from [WPLK18].

In the computer vision community, the attention mechanism is often utilized
by exploiting the inter-channel relationship (channel attention) or inter-spatial
relationship (spatial attention) of image features [WPLK18]. The structures of
the channel attention module and spatial attention module are illustrated in Fig-
ure 3.12. For the channel attention, max pooling and average pooling are applied
to compute the channel attention maps efficiently. When using both poolings,
parameters are also saved by using shared multi-layer perceptrons. Such a shared
representation can be effective because both aggregated channel features lie in
the same semantic embedding space. Next, the attention maps are multiplied
to the input feature map for adaptive feature refinement. The spatial attention
module focuses on localizing the informative part of the image features and is
complementary to channel attention. The spatial attention scores are computed
by applying average pooling and max pooling along the channel axis, followed by
concatenating into an efficient feature descriptor. Then this descriptor applied
by one convolution and sigmoid function to get the final attention map.

Attention mechanism can also be utilized in various image restoration tasks.
The information in the low-quality images often has abundant low-frequency and
valuable high-frequency components. While the low-frequency components are
always kept during restoration, the high-frequency components would usually
contain both annoying noise and the edge and texture details. Therefore, utilizing
the attention mechanism to extract informative information for image restoration
would be a promising solution.
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Figure 3.13.: Residual channel attention block. Figure from [ZLL"18].

In [ZLL*18], a residual channel attention block (RCAB) is proposed for image
super-resolution. As illustrated in Figure 3.13, the channel attention is integrated
with residual blocks. For the b -th residual block in g -th residual groups, the
procedure is written by

Fg,b = Fg,b—l + Rg,b (Xg,b) : Xg,b (320)

where Fj;, and Fj ;1 are the input and output of RCAB. R, is the function of
channel attention. The residual component X, is given by

Xgp = W;,bfs (ng,ng,b—1> (3.21)

where W, and W7, are weights of two convolutional layers in RCAB.

Inspired by the ideas utilizing attention mechanism in image restoration, in
our work, we proposed a quality factor-aware residual attention block, whose
attention scores are given by the quality factor of JPEG images, to flexibly guide
the image restoration procedure.

3.3.4. Generative Adversarial Network

Generative adversarial networks (GANs) [GPAM™14] are a machine learning ap-
proach which generates new data with the same data distribution as the training
set in a unsupervised way. The generative network usually learns a mapping
from a latent space to a data distribution and generates new data as candidates
while the discriminative network distinguishes if the canditates generated form
generative network are true data distribution.

The training goal of the generative networks is to fool the discriminator by
producing novel candidates so that the discriminative network will think they
have true data distribution. The training procedure is illustrated in Figure 5.9.
More formally, the networks are trained jointly in a so-called minimax game with
the following objective function:

m(;n max V(D,G) = Epppora @ log D(x)] + Eoop, (»)[log(1 — D(G(2)))] (3.22)

where GG and D denote the generator and discriminator respectively. The variable
z is the randomly sampled noise.
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Figure 3.14.: The process of training GAN. From left to right: generative

distribution pyoqer approaches the data distribution pga.s. and dis-
criminator (blue dashed line) tries to distinguish between them (low
values if z is fake and high values otherwise). Upon convergence
(given G and D have sufficient capacity), the generator can’t fur-
ther improve as Pmodel = Pdata and the discriminator is unable to
distinguish between the two distributions, i.e., D(z) = 1. Figure

from [GPAM™14].

A problem for training the generator is that the gradient is dominated by a
region where the samples are already good and very flat when the sample is likely
to be fake. However, particularly the bad fake images should be used to train and
improve the generator. The solution is that instead of minimizing the likelihood
of the discriminator to be correct, the likelihood of the discriminator to be wrong
is maximized.

Upon convergence, pmodel (X) learned by the generator approximates the real
data distribution pga. (x). After training, we can use the generator network to
generate new images by feeding random noise z through it.

In our thesis, we use the generative adversarial network to help add realistic
texture details to the restored images.
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Proposed Method

In this chapter, we introduce our novel flexible blind artifacts removal network,
namely FBAR, and present its advantage over other state-of-the-art methods,
especially for real complex JPEG images. In Section 4.1, we will present the
architecture of our proposed FBAR. By analysing the limitation of existing blind
methods on double JPEG compression, we address the importance of flexibility
in Section 4.2. To make a full blind model, we propose a dominant quality estima-
tion algorithm, which can correct the quality factor in double JPEG compression,
in Section 4.3. We compare our method with other design choices in Section 4.4.

4.1. Flexible Blind Artifacts Removal Network

The overall architecture of our proposed method is illustrated in Figure 4.1.
FBAR is an end-to-end model which takes a JPEG compressed image as input
and directly generates the output image. Specifically, FBAR comprises four com-
ponents: decoupler, QF predictor, flexible controller, and image reconstructor.
The network is fairly straightforward, with each component designed to achieve
a specific task.

Decoupler: The decoupler aims to extract deep features and decouple latent
quality factor from the input image. The decoupler involves four scales, each of
which has an identity skip connection to the reconstructor. Residual blocks are
adopted in each scale, and each residual block is composed of two 3 x 3 convo-
lution layers with ReLLU activation in the middle. 2 x 2 strided convolutions are
adopted for the downscaling operations. The number of output channels in each
layer from the first to the third scale is set to 64, 128, 256, respectively. We set
the number of channels in the fourth scale to 576, which is then split into 512
channels and 64 channels for image reconstruction and quality factor prediction
branches. The image branch processes the encoded deep image features with 512
channels. Unlike the traditional design of U-Net-based networks with the same
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Figure 4.1.: The architecture of the proposed FBAR for JPEG artifacts
removal. FBAR consists of four parts, i.e., decoupler, quality factor
predictor, flexible controller and image reconstructor. The decoupler
extracts the deep features from the input corrupted JPEG image
and then splits them into image features and QF features which are
subsequently fed into the reconstructor and predictor, respectively.
The controller gets the estimated QF from the predictor and then
generates QF embeddings. The QF attention block enables the con-
troller to make the reconstructor produce different results according
to different QF embeddings. More importantly, the predicted quality
factor can be changed with interactive selections to have a balance
between artifacts removal and details preservation, according to user
preference.

number of blocks in each scale, increasing the blocks of bottleneck layers brings
more gains on performance with less running time than other scales. We thus
empirically set the number of residual blocks from the first scale to the fourth
scales as 2, 2, 4, 8 to keep a balance between performance and inference speed.
The output of the image branch is fed into the reconstructor. The quality factor
branches first use residual blocks to extract higher-level information. Because the
quality factor is a single value for each image, we adopt a global average pooling
layer to get the global information from the image features.

Quality Factor Predictor: The QF predictor is a 5-layer multilayer percep-
tron (MLP) that takes as input the 64-dimensional QF features and produces an
estimated quality factor Q) F. of the compressed image. We set the number of
nodes in each hidden layer as 512 for a better prediction. For small patch size
during training, it is likely that the patch only includes the limited information
and corresponds to multiple quality factors so that the quality factor can not be
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accurately estimated, which may lead to an unstable training process. Therefore,
we use the L1 loss function to avoid too much penalty for such outliers. Let N
be the batch size during training and 7 the ith sample of each batch, the loss for
quality factor estimation in each batch can be written as:

(4.1)

N
1 i i
‘CQF = N;HQFest _Qth 1

Flexible Controller: The flexible controller is a 3-layer MLP and takes as input
the quality factor, representing the degree of compression of the targeted image.
The controller aims to learn an embedding of the given quality factor that can
be fused into the reconstructor for flexible control. Inspired by recent research in
spatial feature transform [PLWZ19, WYDLI18], the controller learns a mapping
function that outputs a modulation parameter pair (-, 3) which embeds the given
quality factor. Specifically, the first two layers of MLP generate shared interme-
diate conditions, which is then split into three parts corresponding to the three
scales in the reconstructor. In the last layer of MLP, we learn different parameter
pairs for different scales in reconstructor whereas shared (v, 3) are broadcasted
to the QF attention block within the same scale.

Image Reconstructor: The image reconstructor includes three scales and con-
sists of QF Attention Blocks. Image reconstructor receives image features from
decoupler and quality factor embedding parameters (v,3) to generate the re-
stored clean image. The QF attention block is an important component of the
reconstructor. The number of QF attention block from the smallest scale is 4, 2,
2. The learned parameter pair (v, 3) adaptively influences the outputs by apply-
ing an affine transformation spatially to each intermediate feature maps inside
the QF attention block of each scale.

After obtaining (-, 3) from the controller, the transformation is carried out by
scaling and shifting feature maps of a specific layer:

Fout:n}/@En@/Ba (42)

where Fj, and F,,; denote the feature maps before and after the affine transfor-
mation, and @ is referred to element-wise multiplication, i.e., Hadamard product.

Given N training samples within a batch, the goal of the image reconstructor
is to minimize the following L1 loss function between reconstructed image I,
and the original ground-truth image I;:

N

1
»Crec = N Z

=1

r.—I,

rec

1
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Overall, the complete training objective can be written as:
'Ctotal = )\rec : 'Crec + /\QF : /CQFa (44)

where \ec and Aqp are the scaling factors, which control the balance between
image reconstruction and quality factor estimation.

4.2. Flexibility for Real-World JPEG Artifatcs

In this section, we will analyse the difference between single and double JPEG
compression and show how the subsequent image manipulation further disrupts
a single compressed image.

Let us observe the appearances of JPEG images with different compression
settings in Figure 4.2. We set the shift as (4, 4) in non-aligned cases. For
QF = (70, 10), (10, 70) and (70, 10), the blocking effects are similar to single
compression with QF = 10: the edges of 8 x 8 blocks are apparent. However,
in the case of (10, 70), much information is lost, but the clear blocking edges no
longer exist.

We test the restored results of these images using representative blind methods
DnCNN [ZZC*17] and QGAC [ELDS20]. As shown in Figure 4.2, in cases of QF
= 70, 10, (70, 10), the blocking effects are largely removed. When QF = (10,
70), QGAC failed to work because this method extracts the quantization table
from the JPEG image, but JPEG images only have the most recent quantization
table information. Therefore, QGAC regards the quality factor of this image as
70, so the reconstructed image almost keeps unchanged. DnCNN uses only pixel
information, so it does not have this limitation. However, in this case of non-
aligned double JPEG compression when QF1 = 10 and QF2 = 70, we can see
that both methods almost fail to remove the artifacts.

Since our FBAR is also a pixel-based blind method like DnCNN but can predict
the latent quality factor, it can be used to explain the behavior behind a blind
method. We test the failed image using our FBAR. Not surprisingly, we get a
similar, almost unchanged reconstructed result, but we find the predicted quality
factor is 70. We continue to test other images with non-aligned double JPEG
compression and QF1 < QF2, finding that the predicted quality factor is always
close to QF2. This is to say, blind methods trained with single JPEG compression
image pairs are always misled by the appearance of non-aligned double JPEG
images with QF1 < QF2. Our experimental part will show that we can solve this
problem by correcting the quality factor to QF1, demonstrating the need for a
flexible network.

In summary, we classify double JPEG compression into two categories: simple
and complex compression. Simple compression corresponds to non-aligned dou-
ble JPEG with QF1 > QF2 and all aligned double JPEG compression, which is
actually equivalent to single JPEG compression from the perspective of restora-
tion. Complex compression corresponds to non-aligned double JPEG with QF1
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Figure 4.2.: Visual comparison of an example of JPEG images with dif-
ferent degradation settings and their restored results by
DnCNN and QGAC. QF = (QF1, QF2) denotes that the image
is firstly compressed with QF1 and then compressed with QF2. ™
means that there exists a shift between blocks of two compressions.

35



Chapter 4. Proposed Method 4.3. Dominant Quality Factor Estimation

< QF2, meaning that composite artifacts occur in this circumstance. Besides,
we test images with these degradation settings by a recent double JPEG com-
pression algorithm [PCAL1S], finding that only images with non-aligned double
JPEG with QF1 < QF2 is identified, which further support our views.

4.3. Dominant Quality Factor Estimation

From the previous analysis, we have known that it is crucial to infer the smallest
quality factor during the degradation history. Although many quality factor
estimation methods exist, they are based on the DCT domain and need prior
information from JPEG format. For general practical application, we seek to
directly solve this problem from pixel-domain, independent of the image format.

By utilizing the property of JPEG compression, we find that if an image I is
compressed to I’ by QF1. Then we can apply another JPEG compression by
QF2 to I’ to get I”. If the mean square error of I’ and I” is zero, then QF2 =
QF1. Therefore, for the single compressed JPEG image, we can easily get the
correct quality factor by searching for the quality factor with the global minimum
MSE from all possible candidates between 1 and 99, as shown in the left diagram
of Figure 4.3. We further extend this method to challenging non-aligned cases
when QF1 < QF2, where our predictor trained with single JPEG compression
always predicts the quality factor as QF2, although QF1 brings the dominant
degradation. Let us apply the third JPEG, which is aligned with the first one.

—— Aligned with first JPEG
Aligned with second JPEG

300

‘5 250 ‘5
[ [
e e
L [N
o 200 he]
@ )
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® ©
= 150 g "o Smallest First Minimum —> Est. QF 1
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Figure 4.3.: The curve of PSNR between the targeted JPEG image and
the image after applying another JPEG compression over
different quality factors. Left: The targeted image is compressed
only once, with QF = 30. Right: The targeted image is degraded by
QF1 = 10, shift = (4, 4), QF2 = 70.
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We can find that generally, the MSE curve has a minimum at QF1. Since the
shift value is unknown, we search in the range of 0 to 7 in the two dimensions of
an image, respectively.

The right diagram of Figure 4.3 shows an example with QF1 = 10, QF2 =
70 and shift = (4, 4), where all the 64 MSE curves are plotted. It can be seen
that the smallest first minimum of all curves corresponds to the QF1 and location
aligned with the first JPEG whereas the global minimum lies at the curve aligned
with the second JPEG and corresponds to the QF2. We require that the MSE
of the smallest first minimum be smaller than a threshold T" to have more robust
results. We empirically set T" to 30 in our experiment.

4.4. Comparison with Other Design Choices

In the following, we will clarify the differences between the proposed FBAR and
two alternative design choices.

FBAR vs. A Blind Model without QF Predictor: As we have discussed
in Section 4.2, although the pure blind model performs favorably for single JPEG
artifacts removal without knowing the quality factor, it does not generalize well
to real corrupted images whose artifacts are much more complex. FBAR can be
viewed as multiple deblockers and can control the trade-off between JPEG arti-
facts removal and details preservation. Besides, our FBAR with quality factor
prediction has moderately better performance for artifacts removal than the pure
blind one with about 0.05dB gain on average for the Classic5 dataset [ZEP10],
possibly because the predicted quality factor provides additional information
to the reconstruction network. We have similar observations in image super-
resolution [RSRB15] and denoising [ZZZ18a].

FBAR vs. Cascaded QF Prediction and Non-blind Deblocking Model:
It is also possible to design a QF predictor cascaded by a non-blind method.
However, our method enjoys some benefits compared with such cascaded design:
First, for accurate quality estimation, a convolutional network starting from the
same scale as the input image is needed, which would increase the total model size
and cost more training and inference time. Instead, we only add a relative small
prediction branch. Second, our decoupler shared parameters for QF estimation
and image reconstruction, which accelerates the convergence of predicting QF.
On the contrary, in cascaded design, inaccurate QF estimation would lead to an
unstable training process. It might be a solution to train a QF predictor and then
freeze it to train the second part for reconstruction. Nevertheless, it would cost
more training time than our joint training schedule. Third, in cascaded networks,
the predicted parameter is treated as the input of the second part and propagates
through the whole encoder-decoder architecture. Instead, our predicted parame-
ter QF is the only input to the decoder part. We can change the QF to adjust
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different outputs during inference without the need to change the encoded image
features, which saves more than half of the inference time.

4.5. Further Improvements

Our approach can be extended for further improvements. We try to design a
more realistic degradation model to augment the training data to deal with real
images, and use the techniques based on GANs to improve the perceptual quality
of images.

4.5.1. Design a Realistic Degradation Model

Existing methods assume the corrupted images are compressed only once, which
is given by Equation 3.12. However, in real world, most images on the Internet
are compressed many times. The misalignment of data distributions between
training and real images will reduce the performance in the real application.

To tackle the problem of double JPEG compression, we can also augment our
training data using images with double JPEG compression. For double JPEG
compression, the degradation model is given by:

y = JPEG(shift(JPEG(x, QF1)), QF2) (4.5)

For shift operation, we randomly remove the first h rows and w columns of the
image after first compression, and 0 < h,w < 7, QF1 < QF2. Therefore, images
degraded with this model are always with double JPEG compression artifacts.
Now, the training data includes both single and double JPEG images. Please
note that it is not necessary to include the case of QF1 > QF2 or increase
the number of images with aligned double JPEG compression, because they are
actually equivalent to single JPEG compression, as we have shown in Section 4.2.
When trained with double JPEG compressed images, we set the weight of
quality factor loss to zero. Then the dominant quality factor can be trained in

an unsupervised way. We name the FBAR model with augmented training data
as FBAR-A.

4.5.2. Improve Perceptual Quality by GAN

Since restored images tend to give blurry results especially when the quality factor
is small. Following the steps of ESRGAN [WYW™18]|, we fine-tune our model
with additional VGG perceptual loss [JAFF16] and relativistic GAN loss [JM18§]
to improve the perceptual quality. The fine-tuned model is denoted as FBAR-
GAN.

The difference between a relativistic GAN and a standard GAN is that a rela-
tivistic discriminator was proposed to estimate the probability that the real data
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is more realistic than a fake data. The loss function of the discriminator is given
by:

L?)a = —E,, [log(Dra(wr, zs))] — E:cf log(1 — Dra(f,7,))] (4.6)
In relativistic GAN, the generator benefits from the gradients from both generated
data and real data in adversarial training, and its loss function is given by:

g = ~E,, llog(1 = Dpa(wy,27))] = By l0g(Dra(wys, 2,))]  (47)

However, in original GAN, only generated part takes effect.

The perceptual loss is the distance between intermediate feature representa-
tions from a pre-trained deep neural networks for classification. Here the feature
is from VGG [SZ15] network pretrained on ImageNet [KSH12].

The overall loss function of our generator is written as:

Lo = aLpercep + BLE* + yLiee +nLlor (4.8)

where «, (3,7, n are weights of different loss terms.
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Experiments

In this chapter, we will focus on experimentally evaluating our proposed methods,
compared with state-of-the-art approaches, for JPEG artifacts removal. First, we
introduce the training and testing datasets in Section 5.1 and standard evalua-
tion metrics in Section 5.2. Then we present the implementation and training
details Section 5.3. Next, we show the qualitative and quantitative results on syn-
thetic datasets by single, double, and triple JPEG compression respectively and
provide new state-of-the-art results in Section 5.4. Furthermore, in Section 5.5,
we compare our proposed method with other methods on real JPEG images to
demonstrate the effectiveness of our solution for real application. We also do
ablation studies in Section 5.6 and compare the running time in Section 5.7. Fi-
nally, we present the results of our model fine-tuned with GANs in Section 5.8
and examples of practical applications in Section 5.9.

5.1. Datasets

In this section, we introduce the training and testing datasets employed in our
experiments. First, we show the widely used datasets for training and testing in
image restoration tasks. We will also present our proposed Meme dataset, which
is specially collected for comparisons on real-world JPEG images.

5.1.1. Existing Datasets

In our experiments, we train our methods on training sets of DIV2K [AT17] and
Flickr2K [TAVGT'17], and test the results on Classic5 [ZEP10], LIVE1 [She05],
and BSDS500 [MFTMO01]. The descriptions of these datasets are given as follows.
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Training Data

DIV2K: DIV2K dataset contains 1000 2K resolution images, with 800 for train-
ing, 100 for validation, and 100 for testing, respectively. These images were
collected from the Internet, with special care to the image quality, the diversity
of sources including sites and cameras, the image contents and the copyrights.
These images are of high quality both aesthetically and in terms of few corrup-
tions. Besides, the image contents cover a large diversity ranging from natural
scenarios, cities, villages to people, animals and plants.

Flickr2K: Flickr2K dataset contains 2650 high-resolution images collected from
flickr.com using Flickr API. This dataset also has a large range of diversity in-
cluding human, fauna, flora, landscape.

Testing Data

Classich: Classic 5 dataset contains five classic grayscale images (Lena, Barbara,
Boat, Man, Couple) commonly used for image quality assessment tasks. The res-
olution of these five images is all 512 x 512.

LIVE1L: LIVE1 is a publicly released dataset that contains 29 images for image
quality assessment. Different from Classich, these 29 images are in color and with
different resolutions.

BSDS500: BSDS500 dataset is a publicly released database for image segmen-
tation that contains 200 training images, 100 validation images, and 200 test
images. These images are also in color and with different resolutions. Despite
the original purpose for image segmentation, this dataset has also been widely
used for evaluating the task of JPEG artifacts removal.

It should be pointed out that some methods adopted the 100 validation im-
ages for testing while some ways adopted the 200 test images for testing. For
a fair comparison, this difference needs to be noted and stated clearly. In our
experiments, we use the 200 test images for evaluation.

5.1.2. Proposed Meme Dataset

The ultimate goal in JPEG artifacts removal is to restore the real JPEG im-
ages with unknown degradation history. However, most existing methods only
evaluate their methods on synthetic datasets, which may have highly different
data distribution from real-world JPEG images. In Section Section 4.2, we have
shown that in double JPEG compression with QF1 < QF2, there exist complex
compression artifacts, where current blind methods fail to work. Although we
can still generate synthetic datasets, including double or more JPEG compres-
sion, real JPEG images can still have more complex degradation such as resizing,
spatially variant artifacts, and other types of noise. Besides, different degrada-
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Figure 5.1.: Samples of our proposed Meme dataset. This dataset contains
400 JPEG images, which have various compression artifacts.

tion sequences and combinations make it difficult to set up an effective synthetic

dataset. Therefore, it is necessary to propose a new dataset consisting of real
JPEG images.

As JPEG is the most widely used image format on the Internet, it is natural
to think about directly downloading JPEG images from the Internet randomly.
However, as we have discussed in Section 4.2, if the most recent quality factor
is the smallest one, this image is equivalent to a single JPEG compressed image.
As a result, such kind of single JPEG compressed image occupies the majority on
the Internet, making it a class imbalance problem. However, the minor multiple
compressed images can be significant or of high value for some users, so the
collected images should contain as many complex artifacts as possible. Meme
images are a good example that satisfies our requirements. Most meme images are
usually generated by adding words to an image, which is easy to generate double
compression artifacts. Some meme images are a combination of multiple images,
which may lead to spatially variant artifacts. Besides, most meme images often
contain either cartoon characters or human faces. While original clean images of
the human face always have much high-frequency texture information such as skin
and hair, clean cartoon images usually have uniform textures, without much high-
frequency information. Therefore, the artifacts on cartoon images and blurred
information on the human face would be very easy to observe. Since the main
challenges in JPEG image restoration is how to remove artifacts and preserve
necessary texture details at the same time, we can use cartoon images to exam
the performance of artifacts removal and use human face images to exam the
ability to preserve textures, making meme images pretty suitable for evaluating
real JPEG image restoration.

We propose a Meme dataset by collecting 400 meme images from the Internet.
To satisfy the diversity, we get these images by simply typing the keyword 'meme’
on the Google Images search engine and save them if they are JPEG format.
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It should be pointed out that due to the lack of ground truth, it will be impos-
sible to evaluate using common reference-based evaluation metrics such as PSNR
and SSIM. Using a non-reference image quality indicator is a possible solution but
can be inaccurate. Through our evaluation, we find that obvious visual difference
can be observed between different methods, making the visual comparison a more
reliable evaluation method for our proposed dataset.

5.2. Evaluation Metrics

In this section, we introduce the evaluation metrics used in our experiments. For
synthetic datasets, PSNR, SSIM [WBSS04] and PSNR-B [YB10] are calculated
following the conventions of the research community in JPEG artifacts removal.
PSNR and SSIM are commonly used in various image restoration tasks, where
PSNR-B is specially designed for JPEG deblocking tasks. For real JPEG images,
non-reference quality indicators NIQE and BEF are employed, as there are not
ground truth images.

PSNR: The peak signal-to-noise ratio (PSNR) is the ratio between the maximum
possible power of a signal and the power of corrupting noise that affects the
quality of its representation. It is the most popular evaluation measure to make
a comparison between images or signals. Since most signals have a very wide
dynamic range, PSNR is usually written as a logarithmic quantity.

In image restoration, given a H x W groundtruth monochrome image I, and
reconstructed result L., we firstly define the mean squared error (MSE) between
them, which is written as:

[IreC(iaj) - Igt(i>j>]2 (5'1>
Next, the PSNR (in dB) is defined as:

2
PSNR = 10 - log,, (MAXI >

MSE

MAX| (5.2)
=20- lOglo \/TSE

= 20 - log;, (MAX;) — 10 - log,,(MSE)

where MAX; = 28 — 1 is the maximum possible pixel value within an image and
B is the length of bits per pixel. In our experiments, we use 8-bit images, so the
value of MAXj is 255, and typical values for a 8-bit image is between 30 and 50
dB, where higher PSNR means better image quality.

SSIM: The structural similarity index measure (SSIM) is also a widely used
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image quality measure. It is a full-reference image quality assessment (FR-IQA),
which means the measurement is based on an original clean image as a reference.

SSIM is usually calculated using a sliding Gaussian window of size 11 x 11 or
a block window of size 8 x 8. The SSIM between two windows x and y with the
same size N x N is:

SSIM(r,y) = [1(w,9)" - e(z,y)” - s(z.y)” (5:3)

This formula is based on the three components, i.e. luminance (1), contrast (c)
and structure (s). Each component is calculated by:

2z fly + C1

W, y) =5
Mg + iy + C1
20,0, + C2

Y = o o (5.4)
x Y

s(a,y) = 2t

’ 0.0y + C3

where: 1 and o2 are the average and variance of the window. o, is the covariance
of z and y. ¢; = (kL) , ¢o = (koL)? are used to avoid the denominator closet to
zero. L is the length of bits per pixel. By default, we set k; = 0.01, ky = 0.03.

To simplify, a, 8,7 can be set to 1, and c¢3 = ¢3/2, then Equation 5.3 can be
written as:

(2um,uy + cl) (QO'Iy + 62)
(/L?E + pZ + 01) (afg + 02+ cg>
Finally, the mean SSIM bewteen the ground truth I, as the reference and

the reconstructed output L. as the distorted image over all M local windows is
calculated by:

SSIM(z,y) = (5.5)

M
MSSIM (I, Le) = % > SSIM (x;.y;) (5.6)
j=1

The difference between SSIM with PSNR is that PSNR only estimates the
absolute error without considering the structural information within an image.
Actually, spatially closed pixels should have stronger inter-dependencies than dis-
tant pixels. These inter-dependencies contains significant information about the
image structure.

BEF and PSNR-B: The blocking effect factor (BEF) and peak signal-to-noise
ratio including blocking effect factor (PSNR-B) were proposed in [YB10] to mea-
sure the deblocked JPEG images.

First, the mean boundary pixel squared difference Dp and the mean nonbound-
ary pixel squared difference D of the image y are defined as:

Z(yiayj)EHB (yZ - yj)2 + Z(yi,yj>€]/3 (yl - yj>2

D = .
B(Y) Nu, + Ny, (5 7)
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2 2
Z(yi,yj)eﬂg (yz - yj) + Z(yi,yj)eyg (yz - ?/j)
Nug + Nvg

Di(y) = (5.8)

where:

e Ny and Ny are the horizontal and vertical dimensions of the Ny x Ny
image y .

e H and V are the set of horizontal and vertical neighboring pixel pairs in
image y .

e Hp C H is the set of horizontal neighboring pixel pairs that lie across a
block boundary and H$ is the set of horizontal neighboring pixel pairs not
lying across a block boundary.

e Vp C Vis the set of vertical neighboring pixel pairs that lie across a block
boundary and V§ is the set of vertical neighboring pixel pairs not lying
across a block boundary.

Then the blocking effect factor is defined as:

BEF(y) =7 | Da(y) - D§(y)| (5.9)
where los. B c
—=y) 1
n= logz(min(NH,Nv))’ if DB(Y) - DB(y) (510)
0, otherwise

By this definition we can find that BEF as a function of block size, which is based
on that the visibility of blocking effects increases with the block size.

The mean squared error including blocking effects (MSE-B) for reference groundtruth
image Iy and reconstructed image I is then defined as:

MSE-B(Igt, Itec) = MSE(Iy, Liec) + BEF (Liec) (5.11)
Finally, the PSNR-B is defined as:
101 MAX;
=10lo
810 NISE-B(I,, Lec)
According to the above definitions, BEF itself can be used as a non-reference
image quality indicator. However, it is usually efficient for measuring the blocki-
ness, but not for the image quality. For PSNR, it measures the image quality but

does not consider the blocking effects. Therefore, the combination of PSNR and
BEF can not only assess image quality but also measure the blocking effects.

PSNR-B(Ly, Lec) (5.12)

NIQE: The natural image quality evaluator (NIQE) is a completely blind image
quality indicator that does not need the reference image. NIQE measures the
distance between the natural scene statistic based features extracted from the
input image and the features obtained from an image used to train the model.
The features are modelled as multidimensional Gaussian distributions. A smaller
score of NIQE means a better image quality.
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5.3. Implementation and Training Details

For fair experimental comparison, all training and evaluation processes are con-
ducted on the Y’ channel of Y/CgCpg space and the JPEG compressed images are
generated by MATLAB JPEG encoder, according to the common settings of data
generation. Following [ELDS20], we use DIV2K [AT17] and Flickr2K [TAVG*17]
as training data. We randomly crop one million patch pairs with size 96 x 96,
and the compressed images are with random quality factor from 10 to 90. To
optimize the parameters of FBAR, we adopt the Adam solver [KB15] with mini-
batch size 64. The learning rate starts from 1 x 10~* and decays by a factor of
0.5 every 4 x 10* iterations and finally ends with 1.25 x 10~°. Upon convergence,
we finetune our model with training patches with the size 256 x 256 for a few
epochs. We train our model with PyTorch on two NVIDIA GeForce GTX 2080Ti
GPUs. It takes about two days to obtain the FBAR model.

5.4. Experiments on Synthetic JPEG Images

5.4.1. Single JPEG Compression

We first evaluate the performance of the proposed FBAR on the images with
single JPEG compression. We test on the commonly used benchmarks: Clas-
sich [ZEP10], LIVE1L [She05] and the test set of BSDS500 [MFTMO1]. We
compare our proposed FBAR with ARCNN [DDCLT15], MWCNN [LZZ*18],
DnCNN [ZZC*17], DCSC [FZW*19], QGAC [ELDS20]. It should be pointed
out that ARCNN, MWCNN train a single network for each specific value of qual-
ity factor and DCSC is trained with quality factors from 10 to 40. Only DnCNN,
QGAC and our FBAR cover a full range of quality factors.

We calculate the PSNR, SSIM, and PSNR-B for quantitative assessment. The
quantitative results are shown in Table 5.1. Our method has moderately better
results with MWCNN, which trains each model for a specific quality factor and
better results than other blind methods.

For subjective comparisons, some restored images of different approaches on
the LIVE1 dataset have been presented. As can be seen in Figure 5.2, the results
of our FBAR are more visually pleasing.

We also trained our model on RGB channels, referred to as FBAR-C. We com-
pare FBAR-C with QGAC, which is a state-of-the-art method especially for color
JPEG image restoration. The evaluation is made on LIVE]1 dataset and testset of
BSDS500. Although QGAC is specially designed for color JPEG image artifacts
removal, we still get better performance. The result is shown in Figure 5.2.
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5.4. Experiments on Synthetic JPEG Images

Table 5.1.: PSNR|SSIM|PSNRB results of ARCNN*, MWCNN#*,

DnCNN, DCSC, QGAC, and our proposed FBAR on single
JPEG compression. Please note that the methods marked with *’
train a specific model for each quality factor. The best two results are

highlighted in red and blue colors, respectively.

Dataset

Quality
Factor

JPEG

ARCNN*

MWCNN*

DCSC

DnCNN

QGAC

FBAR (Ours)

Classich

10
20
30
40

27.82[0.760[25.21
30.12(0.834[27.50
31.48(0.867(28.94
32.43(0.885(29.92
33.20(0.898[30.76
33.96(0.910]31.57
34.98(0.923(32.71
36.44(0.938(34.43
39.37/0.963|38.07

29.03 [0.793]28.76
31.15/0.852/30.59
32.51(0.88131.98
33.32(0.895/32.79

30.01]0.820[29.59
32.16]0.870|31.52
33.43(0.893]32.62
34.27]0.906/33.35

29.62]0.810[29.30
31.81/0.864]31.34
33.06(0.888]32.49
33.87/0.902|33.30

29.40]0.803[29.13
31.63]0.86131.19
32.91(0.886/32.38
33.77/0.900(33.23
34.46(0.911|33.94
35.11]0.920(34.53
35.97|0.930/35.35
37.09]0.942/36.41
38.54/0.95137.85

29.84]0.812[29.43
31.98]0.869|31.37
33.22/0.892|32.42
34.05(0.905/33.12
34.73]0.915/33.74
35.38(0.923(34.25
36.24/0.933|35.00
37.48(0.946/36.07
40.13]0.968]38.49

30.06]0.821]29.77
32.23]0.871|31.71
33.46(0.894(32.75
34.27]0.906]33.43
34.94]0.916]34.04
35.57]0.924|34.51
5.42]0.934/35.23
37.64]0.946]36.26
40.21]0.967|38.64

LIVE1

27.77[0.773(25.33
30.07]0.851]27.57
31.41]0.885[28.92
32.35(0.904(29.96
33.16(0.918[30.86
33.98(0.929[31.79
35.13]0.943(33.14
36.87(0.958]35.26
40.39]0.977|39.41

28.96]0.808[28.68
31.29(0.873(30.76
32.67/0.904/32.14
33.61(0.920(33.11

29.69]0.825[29.32
32.04]0.889|31.51
33.45(0.915]32.80
34.45(0.930(33.78

29.34]0.818]29.01
31.70(0.883|31.18
33.07(0.911|32.43
34.02]0.926/33.36

29.19]0.812[28.90
31.59(0.880|31.07
32.98(0.909]32.34
33.96(0.925/33.28
34.77/0.934/34.06
35.57]0.945/34.85
36.67]0.95535.96
38.29/0.96737.62
41.38(0.98140.66

29.51]0.825[29.13
31.83]0.888]31.25
33.20(0.914]32.47
34.16(0.929]33.36
34.95(0.939]34.09
35.76(0.948]34.82
36.86]0.958|35.87
38.48]0.969]37.43
41.60(0.982]40.48

29.70[0.826|29.43
32.06]0.889|31.61
33.45(0.915]32.87
34.42]0.930/33.79
35.23]0.940|34.54
36.04]0.949]35.30
37.13]0.958]36.38
38.74]0.969]37.99
141.82]0.982]41.20

BSDS500

27.80[0.768[25.10
30.05(0.849[27.22
31.37/0.884(28.53
32.30(0.903[29.49
33.10(0.917]30.38
33.92(0.929]31.28
35.08(0.943[32.46
36.85(0.959[34.12
40.21/0.978)36.83

29.10]0.804[28.73
31.28(0.870(30.55
32.67(0.902(31.94
33.55(0.918(32.78

29.61]0.820[29.14
31.92]0.885|31.15
33.30]0.912|32.34
34.27]0.928(33.19

29.32]0.813[28.91
31.63]0.880[30.92
32.99(0.908]32.08
33.92(0.924(32.92

29.21]0.809[28.80
31.53(0.878(30.79
32.90(0.907|31.97
33.85(0.92332.80
34.67]0.935/33.60
35.47]0.94434.35
36.52(0.955/35.25
38.00(0.966/36.46
40.62/0.980]38.39

29.46[0.821|28.97
31.73]0.884/30.93
33.07(0.912/32.04
34.01]0.927]32.81
34.82(0.938)33.53
35.62(0.947]34.21
36.67]0.957]35.01
38.13]0.968]36.08
40.78]0.981]37.77

29.61[0.821]29.25
31.92(0.885]31.27
33.28]0.912|32.42
34.24(0.928]33.22
35.05(0.936|33.97
35.85(0.947]34.67
36.89]0.957]35.54
38.34]0.968]36.70
40.91]0.981|38.62

LIVE1: womanhat

BSDS500: 140088

Figure 5.2.: Visual results on single JPEG compression.
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Table 5.2.: PSNR|SSIM|PSNRB results of QGAC and FBAR-C on color
JPEG images with single compression. Although QGAC is also
designed for color JPEG image restoration, our method trained with
the same condition still performs better on PSNR by 0.2 dB on aver-

age.
Dataset Quality JPEG QGAC FBAR (Ours)
Factor
10 25.69|0.743]24.20 27.62]0.804]27.43 27.77]0.803|27.51
20 28.06/0.826/26.49  29.88|0.868|29.56  30.11]0.869]29.69
30 29.37]0.861|27.84 31.17]0.896/|30.77  31.42|0.898|30.92
40 30.28/0.882|28.84  32.05|0.912|31.61 32.32|0.913|31.79
LIVE1 50 31.03|0.897]29.67  32.77|0.923]32.29 33.04]0.924]32.48
60 31.77/0.909]30.51  33.47|0.932(32.96  33.74]0.933|33.15
70 32.77]0.924]31.69  34.40]|0.943|33.86  34.67|0.944|34.08
80 34.23]0.941]33.45  35.68]|0.955|35.12  35.96|0.956|35.38
90 36.86]0.963]36.45 37.64|0.970|37.10 38.07|0.970|37.46
10 | 25.840.74124.13 27.74|0.802]27.47 27.86/0.800[27.52
20 28.21]0.827|26.37  30.01]|0.869|29.53 30.18|0.869|29.57
30 29.57]0.865|27.72  31.33]|0.898|30.70  31.50|0.898|30.75
40 30.52|0.887|28.69  32.25|0.915|31.50 32.42|0.915|31.57
BSDS500 50 31.31/0.902]29.57  33.03]0.927|32.22  33.18]0.927|32.28
60 | 32.11]0.916]30.46 33.82]0.937]32.92 33.95/0.937|32.99
70 33.21]0.931]31.72  34.87]0.949|33.88  34.98|0.949|33.96
80 34.80(0.948|33.72  36.41]|0.962|35.36  36.47|0.962|35.43
90 37.62/0.970[37.14  39.12]0.980]38.02 39.15]0.980|38.04
Average 31.29|0.885]29.93  32.96/0.913]32.35 33.16]0.914]32.48

5.4.2. Double JPEG Compression

The focus of our thesis is to remove the real complex JPEG artifacts, where double
JPEG compression is one important step towards this goal. So it is necessary
also to evaluate the performance of current state-of-the-arts and our proposed
methods on images with double JPEG compression. We compare our methods
with blind methods: DnCNN, DCSC, QGAC.

The comparison is conducted using different combinations of quality factors
(QF1, QF2) on Classich dataset. Each original image is JPEG compressed with
a quality factor QF1, decompressed, cropped by a random shift (i, j), with 0 <
1 < 7,0 <7 <7withrespect to the upper left corner, and JPEG compressed with
another quality factor QF2. We generate 10 double compressed JPEG image for
each original one.

The numerical and visual results are reported in Table 5.3 and Figure 5.3. As
shown in Table 5.3, the order of first quality factor QF1 and QF2 significantly
impacts other methods and our FBAR. When changing the order of QF1 and
QF2, although the differences of PSNR values are generally smaller than 0.2 dB,
a significant drop in performance can be seen on other methods and our FBAR.
However, our proposed FBAR can help our analysis and explain the behavior
of blind methods. We find that the predicted quality factor is always close to
the most recent quality factor for non-aligned double JPEG compressed images.
Because our FBAR and other methods are all trained with single compressed
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Table 5.3.: PSNR|SSIM|PSNRB comparisons of DnCNN, DCSC,
QGAC, our proposed FBAR, FBAR-D and FBAR-A on dou-
ble JPEG compression. The best two results are highlighted in red
and blue colors. It can be found that DnCNN, QGAC and FBAR,
which were trained with single JPEG images with a wide range of
quality factors from 10 to 90 do not have a good performance when
Q1 < Q2. DCSC trained with QFs from 10 to 40 performs relatively
better as expected, according to our previous analysis in the main pa-
per. By correcting the predicted quality factor, FBAR-D boosts the
performance in the type of Q1 < Q2. FBAR-A further improves these
results by augmenting the training data.

Type %::i‘:: JPEG DnCNN DCSC QGAC FBAR (Ows)  FBAR-D (Ours) FBAR-A (Ours)

(30,10) | 27.43]0.748]24.96 29.09]0.796]28.83 20.30]0.803[20.02 20.48]0.812]20.08 20.72]0.815[20.42 29.72]0.815[20.42 29.69]0.813]20.42
50,10) | 27.74/0.756]25.18  29.40[0.802|29.15 29.62(0.80929.33 29.83]0.819[29.45 30.07|0.821]20.79  30.07(0.821[20.79 29.98/0.819|29.74
70,10) | 27.74/0.757|25.15  29.37]0.802|29.10 29.60(0.81029.30 29.82|0.819[29.42 30.05/0.822[20.75 30.05[0.822[29.75 29.96/0.819|29.69
90,10) | 27.83]0.758|25.22  29.43(0.802]29.17 29.63]0.808[29.34 29.86/0.818|29.48 30.08]0.820[20.80 30.08(0.820[29.80 29.980.817]29.73
50,30) | 30.67]0.848[28.51 32.25(0.875[31.91 32.40(0.877|32.02 32.44|0.880[31.83 32.70(0.882[32.19 32.70[0.882[32.19 32.76]0.882]32.
70,30) | 31.07/0.859[28.68 32.66(0.884|32.21 32.82(0.886/32.34 32.93]0.880[32.18 33.20(0.801]32.55 33.20[0.801[32.55 33.15(0.890|32.65
90,30) | 31.39]0.867]28.89  32.89]0.888]32.48 33.05(0.890[32.60 33.20]0.894|32.51 33.45(0.896]32.86  33.45]0.806]32.86  33.33]0.893[32.89
70,50) | 32.560.885[30.42  34.08(0.904|33.60 34.20(0.906(33.75 34.24]0.908(33.35 34.50(0.909[33.69 34.41/0.907|33.75 34.55(0.909|33.94
90,50) | 32.99]0.896|30.54 34.36(0.911|33.80 34.41|0.911(33.87 34.61]0.915/33.59 34.84]0.916|33.89 34.62(0.913[33.85 34.74/0.914]34.01
(90,70) | 34.630.917|32.54  35.81]0.928]35.28 35.62|0.926]35.26 36.02]0.931|34.84 36.24/0.932|35.10 36.03]0.929]35.16  36.17]0.931|35.33
10,10) | 26.63]0.708|24.67 28.08]0.761|27.89 28.16/0.76527.97 28.26]0.772|28.00 28.44]0.775[28.26 28.44[0.775|28.26  28.66]0.780[28.51
30,30) | 30.06]0.831[28.20 31.52(0.860[31.20 31.64/0.862[31.32 31.61]0.864|31.09 31.85[0.866]31.43 31.85(0.866]31.43 32.08|0.869|31.78
50,50) | 31.95/0.871[30.15 33.39(0.892|33.04 33.55(0.894(33.20 33.43]0.895(32.75 33.67|0.897|33.08 33.73(0.896]33.26 33.88]0.89833.46
70,70) | 33.33/0.900|31.80 34.67(0.916|34.26 34.75/0.917[34.40 34.69]0.917|33.8% 34.95/0.919|34.17 34.98(0.918|34.31 35.13[0.920[34.54
90,90) | 37.33]0.946(36.43 37.88(0.948]37.34 37.20[0.946]36.82 38.40]0.956/37.32 38.66|0.956]37.53 38.63]0.956[37.51 38.80]0.957|37.89
10,30) | 27.60]0.748(26.52 28.63(0.782|28.48 28.61|0.781|28.44 28.400.778[28.10 28.52[0.781[28.33 29.02(0.791|28.90 29.51[0.806[29.40
10,50) | 27.70]0.754|27.10  28.52(0.78128.38  28.61]0.782[28.47 28.250.775[27.96 28.38[0.778[28.20 29.19]0.795[29.06  29.64]0.811]29.54
10,70) | 27.81]0.757|27.31  28.57(0.781|28.40 28.78|0.787|28.64 28.18]0.772[27.82 28.46(0.780[28.31 29.39]0.80029.30 29.87[0.817]29.76
10,90) | 27.80]0.757|27.63  28.47|0.778|28.41 28.89|0.791|28.87 27.98]0.766[27.81 29.04[0.797|29.00 29.69]0.810|29.66 29.95[0.820[29.89
30,50) | 30.84]0.850[20.42 32.18]0.874]31.96 32.37(0.877|32.13  32.06]0.874|31.57 32.31]0.877|31.89 32.61]0.880[32.30 32.83]0.883[32.60
30,70) | 30.98/0.856(30.16  32.120.875[31.97 32.42/0.880[32.28 31.80/0.873|31.45 32.09]0.876|31.85 32.69|0.882[32.49 32.88]0.886|32.71
30,90) | 31.27]0.862|30.90 32.28(0.877]32.12 32.80]0.885[32.65 31.61]0.870/31.28 32.59|0.884]32.42 33.16[0.890[33.00 33.20/0.891|33.02

(50,70) | 32.32]0.88331.19  33.58(0.900|33.32 33.80/0.903[33.58 33.43/0.900[32.91 33.68(0.902|33.20 34.03]0.905|33.61 34.15[0.906]33.85

(50,90) | 32.89]0.892|32.43 33.960.905(33.77 34.31]0.909|34.10 33.33]0.900[32.90 34.06[0.907|33.76 34.60/0.912[34.31 34.63]0.912[34.33

(70,90) | 34.570.91734.13  35.62]0.926[35.43 35.64/0.926[35.44 35.17]0.924]34.80 35.68(0.928]35.25 36.10]0.930[35.73 36.13]0.931]35.81
Average 30.69]0.83320.13  31.95/0.858[31.66 32.09]0.861|31.81 31.96/0.861[31.41 32.29]0.865[31.83 32.50]0.868]32.09 32.63]0.871]32.28

(
(
(
QF1>QF2 E
(
(
(

QF1=QF2

QF1<QF2

images, our quality factor prediction can reveal how general blind methods work
under the unseen scenario. To further support our views, let us look at the
results of DCSC. Since DCSC is trained with quality factor from 10 to 40, it
would assume that all the input images are with quality factor from 10 to 40.
Therefore, it performs generally better than DnCNN, QGAC and FBAR when
QF1 < QF2. Despite some benefits for double JPEG compression, it should be
pointed out that it is not reasonable to use a model trained with low quality
factors to tackle all kinds of JPEG images. When dealing with relative high-
quality images, it tends to give more blurry results.

To show the effectiveness of our proposed dominant quality factor estimation
algorithm, we set the input controller as the value got from this algorithm. We
refer to this combination as FBAR-D. Table 5.3 shows that by correcting the
predicted quality factor, we largely improve the PSNR in QF1 < QF2 by around
0.5 dB. Despite some failed examples in (70, 50), the PSNR is already relative
high (more than 34 dB) in this case.
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(e) QGAC (f) FBAR (g) FBAR-D (b) FBAR-A

Figure 5.3.: Qualitative comparisons of an example ‘Lena’ from Classich
dataset with synthetic non-aligned double JPEG compres-
sion. In this image, QF1 = 10, QF2 = 70 and the shift = (7, 4).
It can be seen that clear blocking effects remain after restoration by
other blind methods and our FBAR. We got a significantly better
visual result by correcting the predicted QF from our dominant QF
prediction algorithm. By augmenting the training data, FBAR-A
can keep more texture detail.

To demonstrate the flexibility of FBAR, we set the quality factor manually
by traversing from 10 to 90. The test image is firstly compressed by quality
factor 30, followed by a shift of (4,4) and then a second JPEG compression with
quality factor 70. We plot the curve between the PSNR and quality factor in
Figure 5.4. We can find that the result provided by FBAR-D is very close to the
theoretical best result. We also show the visual results with quality 10, 30 and 90
in Figure 5.5. We can observe that when the quality factor is 10, artifacts around
the words are clearly removed, but the bricks become blurred. When quality
factor is 90, the bricks keep much texture information. However, the artifacs
around the words are not removed. By setting different quality factors, users can
get results with different perception qualities and make an interactive selection
according to their preference.

We also investigate if our FBAR can predict the dominant quality factor by
augmenting the training data. To achieve this, we augment the training data with
double JPEG compression with QF1 < QF2 upon the convergence of training with
single JPEG compression. We set the weight of quality factor loss function Agr =
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Figure 5.4.: PSNR results over the set quality factor from 10 to 90.

(a) JPEG

Figure 5.5.: An example to show the flexibility of FBAR on the image.
The image 'LIVE1l: cemetry’ is double compressed by QF1 = 30
and QF2 = 70 and shift = (4, 4). Visual comparisons of setting the
controllable quality factor as 10, 30 and 90. Although the artifacts
around the words can be effectively removed when the QF is small,
the texture on the bricks becomes blurred. Therefore, users can get
the desired results through interactive selection by FBAR.

0 when training with double compressed JPEG images. After only around 800
iterations with batch size 64, we get our augmented version FBAR-A, predicting
the dominant quality factor accurately in a self-supervised way. We also report
the results of FBAR-A in Table 5.3 and Figure 5.3. We can find that FBAR-A
further improves performance when QF1 < QF2. The difficult case when QF1 =
QF2 also sees an improvement by FBAR-A.
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5.4.3. Triple JPEG Compression

To further show the performance of images with more complex degradation, we
resize the generated synthetic double JPEG images from the Classich dataset.
The scale was selected randomly from the range of (0.5, 2). Next, a third JPEG
compression with quality factor randomly from 10 to 90 is applied to each image.
Resizing between two JPEG compression is more complex than shifting because
the previous 8 x 8 blocks would be destroyed by the resizing operation. To
obtain the ground truth images, we apply the same resizing operation. The
results are provided in Table 5.4. Please note that in this case, predicting the
dominant quality factor becomes more difficult, so we include the results when
the quality factor is set as the smallest one of triple compression, namely FBAR-
D*, which can be obtained by interactive selection. Please note that FBAR,
FBAR-D and FBAR-D* are the same model with different set quality factors,
which demonstrates the flexibility of our proposed method.

Table 5.4.: PSNR|SSIM|PSNRB comparisons of DnCNN, DCSC,
QGAC, our proposed FBAR, FBAR-D and FBAR-D* on
triple JPEG compression. For each of the double JPEG com-
pressed images, we apply a random resizing with a scale between 0.5
to 2, followed by third JPEG compression, with the quality factor
randomly selected from 10 to 90. Since the dominant quality factor
is difficult to predict in this case, we include the reachable approxi-
mate best result through interactive selection by setting the quality
factor as the smallest one, namely FBAR-D*. The best two results
are highlighted in red and blue colors.

Quality

Tt JPEG DnCNN DCSC QGAC FBAR (Ours)  FBAR-D (Owrs) FBAR-D* (Oul's)‘

Type
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)
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QF1>QF2 E ;
(90,30)
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5.5. Experiments on Real-World JPEG Images

(f) FBAR-D (g)vFBAR-QIO (h) FBAR-A

Figure 5.6.: Qualitative results of an example from our Meme dataset.
It can be seen that our proposed FBAR-D and FBAR-A have the
best visual quality.

Table 5.5.: BEF and NIQE scores of different methods on Meme dataset.

JPEG | DnCNN | DCSC | QGAC | FBCNN | FBCNN-D | FBCNN-A | FBCNN-Q10
BEF 1.23 0.20 0.14 0.41 0.27 0.25 0.12 0.11
NIQE | 13.26 14.01 13.83 | 14.09 14.05 14.07 13.88 13.88

Besides the above experiments on synthetic test images, we also conduct ex-
periments on real images to demonstrate the effectiveness of the proposed FBAR.
We collected 400 meme images from the Internet, which is introduced in Sec-
tion 5.1.2. This kind of images is widely used in social media and often compressed
many times. Since there are no ground-truth HR images, we only provide the vi-
sual comparison. Figure 5.6 shows a test example on our collected Meme dataset.
More results can be seen in the appendix.

Since the ground truth images are not available, we evaluate the average scores
of different methods over our Meme dataset using BEF [YB10] (Blocking Ef-
fect Factor) and NIQE [MSB12] (Naturalness Image Quality Evaluator) as non-
reference image quality indicators in Table 5.5. Since these images are severely
degraded, we also set the quality factor of FBAR as 10 (FBAR-Q10) to com-
pare. Both indicators mean better quality when they are smaller. Please note
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that both indicators can only work as a reference because they can not describe
the image quality accurately and comprehensively. For example, NIQE prefers
natural images, which are only part of the images in the real world. Besides, a
blurry image would have a low BEF, despite the loss of many details. Therefore,
non-reference image quality indicators designed for real JPEG images are needed
to be proposed in future.

5.6. Ablation Studies

We do ablation studies on different factors which can influence the performance
of our network, and the result is given. The experiments are conducted on our
synthetic Classich dataset with (QF1, QF2) = (10, 90), and each original image
gives 10 double compressed images with random shift values. We remove the
quality factor predictor (FBAR w/o predictor), do not fine-tune with patches of
the size 256 x 256 (FBAR w /o fine-tuning), set the number of residual blocks from
the first to the fourth scale of decoupler all as 2 (FBAR-S1) and 4 (FBAR-S2). As
a reminder, the number of blocks from the first to the fourth scale in our default
settings is 2, 2, 4, 8. We also compare the result with FBAR with dominant
quality factor prediction (FBAR-D) and with augmented training data (FBAR-
A). Figure 5.6 demonstrates the effectiveness of our design choices. Especially
when the dominant quality factor is successfully identified, the performance of
non-aligned double JPEG compression can be largely improved, which provides
an idea on how to deal with real complex corrupted images when prior knowledge
about the degradation history is unknown.

Table 5.6.: Ablation studies on different influencing factors. The largest
improvement occurs when our dominant quality factor prediction al-
gorithm corrects the predicted quality factor.

Experiments PSNR SSIM PSNRB
FBAR w/o predictor | 28.90 0.787  28.86
FBAR w/o fine-tuning | 29.01 0.796  28.97

FBAR-S1 28.81 0.793  28.72
FBAR-S2 2891 0.794  28.87

FBAR 29.04 0.797  29.00
FBAR-D 29.69 0.810  29.66
FBAR-A 29.95 0.820  29.89

We also show the results of quality factor prediction on the LIVE1 dataset with
single and double JPEG compression in Figure 5.7. For single image compression,
images are compressed with quality factors from 10 to 90 with a step of 10. For
double JPEG compression, we fix the first quality factor QF1 = 10, and the
second quality factor QF2 is set from 10 to 90 with a step of 10. To better show
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the influence of non-aligned double JPEG compression, we set the shift value of
double JPEG compression as (4, 4), as in this case, the 8 x 8 blocks from each
compression are not overlapped to a relatively large degree.

As we can see in Figure 5.7, in the case of single compression, the predictor
of FBAR can predict the latent quality factor accurately with almost negligible
error. However, in a non-aligned double JPEG case, the predictor tends to give
a result similar to QF2, although the main artifacts are introduced by the first
JPEG compression. This observation explains why traditional blind methods
trained with a full range of quality factors fail to work in non-aligned double
JPEG compression with QF1<QF2: The network is misled by the additional
artifacts introduced by QF2. We also find that when QF2 is large (i.e. QF2 =
90), the predicted quality factor is close to 20, which means the predictor can
still recognize the main artifacts despite additional slight artifacts.

We also show the predicted quality factors given by our dominant quality factor
prediction algorithm. It can be observed that although the network tends to give
a result similar to QF2, the predicted quality factor from our algorithm is always
close to the smaller QF1. By correcting the quality factor, FBAR-D can boost
the performance in double JPEG restoration.
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Figure 5.7.: Results of predicted quality factors on LIVE1l. Left: Images
are single JPEG compressed. The predictor of our FBAR can give
accurate results of the quality factors. Right Images are double
JPEG compressed. The predicted quality factor from our network is
always closet to QF2, excect for QF = 90. FBAR-D denotes FBAR
with quality factor corrected by the dominant quality algorithm. We
can see that our algorithm can always identify the smaller QF1.
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5.7. Running Time Analysis

We show the runtime performance of our network compared to MWCNN [LZZ 18],
DnCNN [ZZC*17], DCSC [FZW'19], QGAC [ELDS20], which we ran against,
in Figure 5.8. Please note that we do not include ARCNN [DDCLT15] because
its source code does not provide GPU acceleration. We measure the running
time per frame (in seconds) on LIVEL dataset on single NVIDIA 1080Ti GPU.
Our FBAR achieved a good trade-off between performance increase and inference
speed.
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Figure 5.8.: Increase in PSNR-B vs running time per frame. It should
be pointed out that MWCNN trains a separate model for a specific
quality factor

5.8. Results of FBAR-GAN

Although our method has achieved favourable results regarding the provided nu-
merical metrics, such as PSNR, PSNR measures the image quality only in a
mathematical way and does not consider the human visual systems. For exam-
ple, PSNR-~oriented methods tend to give blurry results when the input image
was compressed with a small quality factor. To increase the perceptual quality
of our method, we use the techniques from GAN and perceptual loss to fine-tune
our network trained for higher PSNR.

We show the results of our model fine-tuned with relativistic GAN loss and
VGG perceptual loss, which can add realistic texture details. As we can see
in Figure 5.9, our FBAR can remove the severe blocking effects effectively. How-
ever, the texture details on the fountain are lost, and the overall image looks
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over-smoothed and blurry. On the contrary, our FBAR-GAN can remove the
artefacts and contain realistic high-frequency texture details.

Please note that there is a difference in keeping texture details between our
flexible model and with GAN. In our flexible model, we can change the quality
factor to a larger value so that most high-frequency information from the original
low-quality image remains. However, in FBAR-GAN, the texture information is
generated by the generator to make the data distribution of the output closer to
real images, so it is not from the input image.

(a) JPEG (b) FBAR (c) FBAR-GAN

Figure 5.9.: Results of FBAR-GAN compared with JPEG and FBAR.
When the JPEG image is severely compressed, PSNR~oriented meth-
ods tend to give blurry result. Our FBAR-GAN can add realistic
texture details to overcome this problem.

5.9. Applications

Since JPEG is the most widely used image format on the Internet, successful
JPEG artifacts removal will benefit other computer vision tasks. This section
will give examples of how our proposed method can improve the performance of
single image super-resolution and object detection, which are representatives of
low-level and high-level computer vision tasks, respectively.

5.9.1. Super-Resolution

USRNet [ZGT20] is a state-of-the-art method for single image super-resolution.
However, as we can see from Figure 5.10, when the low-resolution image contains
JPEG artifacts, the output would include many gridding effects, making the result
worse than input. If the input image is processed by our FBAR, we can remove
the JPEG artifacts. Then USRNet can provide a desirable high-resolution result.
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(c) Artifacts Removal of (a) by FBAR (d) SISR of (¢) by USRNet

Figure 5.10.: Application of FBAR in image super-resolution. Our JPEG
artifacts removal method can help to improve the performance of
single image super-resolution.

5.9.2. Object Detection

Most existing models for high-level vision tasks are trained using high quality
images, which can lead to degraded performance when the input contains many
JPEG artifacts. Our FBAR can also benefit object detection as a high-level vision
task. Here we use the recent YOLOvV5 as an example. By preprocessing the input
JPEG images with our FBAR, we improve the performance of object detection.
We improve the confidence scores, detect more objects. The misclassified car is
also correctly identified.
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Figure 5.11.: Application of FBAR in object detection. Our JPEG artifacts
removal method can help to improve the performance of object de-
tection.

60



Conclusion

In this thesis, we proposed a flexible blind JPEG artifacts removal network
(FBAR) for real JPEG image restoration. FBAR decouples the quality factor
from the input image via a decoupler and then embeds the predicted quality fac-
tor into the subsequent reconstructor through a quality factor attention block for
flexible control. The predicted quality factor can also be adjusted to achieve a
balance between artifacts removal and details preservation. Besides, we address
non-aligned double JPEG restoration tasks to take steps towards real JPEG
images with severe degradations. Extensive experiments on single JPEG com-
pressed images, the more general double compressed JPEG images and real-world
JPEG images demonstrate the flexibility, effectiveness and generalizability of our
proposed FBAR for restoring different kinds of degraded JPEG images.

This thesis can be further extended for future work. First, in our work, we
mainly tackle the problem of real JPEG restoration by a flexible network using
only single compressed synthetic data, providing an insight on improving the
generalization ability with limited data. However, in the real-world, images may
be corrupted with various kinds of degradation, such as blurring. Designing a
more realistic degradation model for training is a promising solution for real
application. Second, the performance of restoration is largely influenced by the
network architecture. Therefore, designing novel building blocks which are skilled
at image restoration is still necessary. Third, compared with traditional methods,
learning-based methods enjoy fast inference speed but usually lack flexibility. We
solve this problem by using a conditional network. Another promising solution
is to compare deep learning with traditional methods to unleash the greatest
potential. Fourth, we may try to train a flexible model with unknown quality
factors for better real application. Fifth, as we have discussed in this thesis,
existing non-reference image quality measures have their own limitations and can
not reflect the image quality accurately. Therefore, designing a no-reference image
quality measure which can evaluate the images accurately and comprehensively
would be of great value for the subsequent research towards real image restoration.
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